Waypoint Tracking for Fixed-Wing Unmanned Aircraft Under Multiple Constraints
Keywords:
Asymmetric input saturation, constrained angular velocity, fixed-wing unmanned aircraft, finite-time control, waypoint trackingAbstract
This paper investigates the waypoint tracking and the finite-time (FINT) attitude control problems of six-degree-of-freedom fixed-wing unmanned aircraft subject to asymmetric input saturation (AIS), angular velocity constraints, and external disturbances. First, an attitude error that describes the difference between the ballistic frame and the desired frame is defined, such that the flight direction in the inertial frame can be regulated by integrating attitude control method, thereby achieving waypoint tracking. Second, we propose a smooth AIS model to handle the AIS problem and a nonlinear mapping function to address the angular velocity constraints. These approaches yield a constraint-free system and reduce the mixed-constraint problem to ensuring the boundedness of all signals. Then, by using the backstepping method, the robust adaptive control technique, and an introduced FINT disturbance observer, a FINT control law is designed to regulate the actual flight direction of the aircraft. The FINT convergence of the attitude and airspeed tracking errors is guaranteed using the Lyapunov theory. Finally, numerical simulation is conducted to validate the effectiveness of the proposed control law.
References
[1] Kim T, Qiao D. Energy-efficient data collection for IoT networks via cooperative multi-hop UAV networks. IEEE Trans Veh Technol 2020; 69(11): 13796-811.
https://doi.org/10.1109/TVT.2020.3027920
[2] Lin X, Niu Y, Yu X, Fan Z, Zhuang J, Zou AM. Paying more attention on backgrounds: Background-centric attention for UAV detection. Neural Networks 2025; 185: 107182.
https://doi.org/10.1016/j.neunet.2025.107182
[3] Oh H, Kim S, Shin HS, Tsourdos A, White B. Coordinated st-andoff tracking of moving target groups using multiple UAVs. IEEE Trans Aerosp Electron Syst 2015; 51(2): 1501-14.
https://doi.org/10.1109/TAES.2015.140044
[4] Chen YJ, Chang DK, Zhang C. Autonomous tracking using a swarm of UAVs: A constrained multi-agent reinforcement learning approach. IEEE Trans Veh Technol 2020; 69(11): 13702-17.
https://doi.org/10.1109/TVT.2020.3023733
[5] Motamedi A, Mortazavi M, Sabzehparvar M, Duchon F. Minimum time search using ant colony optimization for multiple fixed-wing UAVs in dynamic environments. Appl Soft Comput 2024; 165: 112025.
https://doi.org/10.1016/j.asoc.2024.112025
[6] Fredriksen E, Pettersen KY. Global κ-exponential way-point maneuvering of ships: Theory and experiments. Automatica 2006; 42(4): 677-87.
https://doi.org/10.1016/j.automatica.2005.12.020
[7] Oland E, Schlanbusch R, Kristiansen R. Underactuated waypoint tracking of a fixed-wing UAV. IFAC Proc Vol 2013; 46(30): 126-33.
https://doi.org/10.3182/20131120-3-FR-4045.00007
[8] Rout R, Subudhi B. Narmax self-tuning controller for line-of-sight-based waypoint tracking for an autonomous underwater vehicle. IEEE Trans Control Syst Technol 2017; 25(4): 1529-36.
https://doi.org/10.1109/TCST.2016.2613969
[9] Jing A, Gao J, Min B, Wang J, Chen Y, Pan G, et al. Energy-efficient waypoint tracking for underwater gliders: theory and experimental results. IEEE Trans Cybern 2025; 55(9): 4064-77.
https://doi.org/10.1109/TCYB.2025.3578122
[10] Muralidharan V, Mahindrakar AD. Position stabilization and waypoint tracking control of mobile inverted pendulum robot. IEEE Trans Control Syst Technol 2014; 22(6): 2360-7.
https://doi.org/10.1109/TCST.2014.2300171
[11] Wang J, Zhao L, Liu F, Xia K. Online robot navigation using discrete waypoints via time-varying guidance vector fields. IEEE Trans Ind Electron 2025; 72(3): 2987-96.
https://doi.org/10.1109/TIE.2024.3436533
[12] Duda H. Effects of rate limiting elements in flight control systems - A new PIO-criterion. In: Guidance, Navigation, and Control Conference. American Institute of Aeronautics and Astronautics; 1995.
https://doi.org/10.2514/6.1995-3204
[13] Klyde DH, Mitchell DG. Investigating the role of rate limiting in pilotinduced oscillations. J Guid Control Dyn 2004; 27(5): 804-13.
https://doi.org/10.2514/1.3215
[14] Lv M, Li Y, Wan L, Dai J, Chang J. Fast nonsingular fixed-time fuzzy fault-tolerant control for HFVs with guaranteed time-varying flight state constraints. IEEE Trans Fuzzy Syst 2022; 30(11): 4555-67.
https://doi.org/10.1109/TFUZZ.2022.3157393
[15] Kim Sh, Kim M, Kim Y. Fault-tolerant adaptive control for trajectory tracking of a quadrotor considering state constraints and input saturation. IEEE Trans Aerosp Electron Syst 2024; 60(3): 3148-59.
https://doi.org/10.1109/TAES.2024.3360021
[16] Lv M, Ahn CK, Zhang B, Fu A. Fixed-time antisaturation cooperative control for networked fixed-wing unmanned aerial vehicles considering actuator failures. IEEE Trans Aerosp Electron Syst 2023; 59(6): 8812-25.
https://doi.org/10.1109/TAES.2023.3311420
[17] Duan H, Yuan Y, Zeng Z. Distributed cooperative control of multiple UAVs in the presence of actuator faults and input constraints. IEEE Trans Circuits Syst II 2022; 69(11): 4463-7.
https://doi.org/10.1109/TCSII.2022.3181442
[18] Zhang B, Sun X, Lv M, Liu S, Li L. Distributed adaptive fixed-time fault-tolerant control for multiple 6-DOF UAVs with full-state constraints guarantee. IEEE Syst J 2022; 16(3): 4792-803.
https://doi.org/10.1109/JSYST.2021.3128973
[19] Yang XR, Lin X, Yang Y, Zou AM. Finite-time attitude tracking control of rigid spacecraft with multiple constraints. IEEE Trans Aerosp Electron Syst 2024; 60(3): 3688-97.
https://doi.org/10.1109/TAES.2024.3356983
[20] Zou AM, Kumar KD. Finite-time attitude control for rigid spacecraft subject to actuator saturation. Nonlinear Dynam 2019; 96(2): 1017-35.
https://doi.org/10.1007/s11071-019-04836-7
[21] Ji J, Zhang Z, Zuo Z, Wang Y. Event-triggered global con-sensus of second-order multi-agent systems with asymmetric input saturation. Neurocomputing 2024; 574: 127287.
https://doi.org/10.1016/j.neucom.2024.127287
[22] Wang M, Huang L, Yang C. NN-based adaptive tracking control of discrete-time nonlinear systems with actuator saturation and event-triggering protocol. IEEE Trans Syst, Man, Cybern, Syst 2021; 51(12): 7613-21.
https://doi.org/10.1109/TSMC.2020.2981954
[23] Wang K, Wen SX, Gao YF, Zhang X, Sun XM. Switching anti-windup synthesis for linear systems subject to asymmetric input magnitude and rate saturation: Application to aircraft engines. IEEE Trans Aerosp Electron Syst 2024; 60(2): 1924-36.
https://doi.org/10.1109/TAES.2023.3346803
[24] Arya SR, Rao S, Dattaguru B. Effect of asymmetric control constraints on fixed-wing UAV trajectories. IEEE Trans Aerosp Electron Syst 2019; 55(3): 1407-19.
https://doi.org/10.1109/TAES.2018.2871435
[25] Zhou Y, Dong W, Liu Z, Lv M, Zhang W, Chen Y. IBLF-based fixedtime fault-tolerant control for fixed-wing UAV with guaranteed timevarying state constraints. IEEE Trans Veh Technol 2023; 72(4): 4252-66.
https://doi.org/10.1109/TVT.2022.3223121
[26] An B, Fan H, Wang B, Liu L, Wang Y. Velocity-constrained distributed formation tracking of fixed-wing UAVs with multiple leaders. Aerosp Sci Technol 2024; 154: 109514.
https://doi.org/10.1016/j.ast.2024.109514
[27] Jiao D, Wang Y, Chen Y, Lu W, Zou AM. Finite-time attitude control for fixed-wing UAVs with full-state constraints and input saturation. J Franklin Inst 2025; 342(4): 107522.
https://doi.org/10.1016/j.jfranklin.2025.107522
[28] Lai B, Tang Y, Wang Y, Jiao D, Zou AM. Finite-time attitude tracking control for rigid spacecraft subject to angular velocity constraints and input magnitude and rate saturation. Aerosp Sci Technol 2025; 160: 110084.
https://doi.org/10.1016/j.ast.2025.110084
[29] Bauersfeld L, Spannagl L, Ducard G, Onder C. MPC flight control for a tilt-rotor VTOL aircraft. IEEE Trans Aerosp Electron Syst 2021; 57(4): 2395-409.
https://doi.org/10.1109/TAES.2021.3061819
[30] Manzoor T, Xia Y, Zhai DH, Ma D. Trajectory tracking control of a VTOL unmanned aerial vehicle using offset-free tracking MPC. Chinese J Aeronaut 2020; 33(7): 2024-42.
https://doi.org/10.1016/j.cja.2020.03.003
[31] Li X, Zhang H, Fan W, Wang C, Ma P. Finite-time control for quadrotor based on composite barrier Lyapunov function with system state constraints and actuator faults. Aerosp Sci Technol 2021; 119: 107063.
https://doi.org/10.1016/j.ast.2021.107063
[32] Liu Y, Zhang H, Sun J,Wang Y. Adaptive fuzzy containment control for multiagent systems with state constraints using unified transformation functions. IEEE Trans Fuzzy Syst 2022; 30(1): 162-74.
https://doi.org/10.1109/TFUZZ.2020.3033376
[33] Yu L, He G,Wang X, Zhao S. Robust Fixed-Time Sliding Mode Attitude Control of Tilt Trirotor UAV in Helicopter Mode. IEEE Trans Ind Electron 2022; 69(10): 10322-32.
https://doi.org/10.1109/TIE.2021.3118556
[34] Zou AM, de Ruiter AHJ, Kumar KD. Disturbance observer-based attitude control for spacecraft with input MRS. IEEE Trans Aerosp Electron Syst 2019; 55(1): 384-96.
https://doi.org/10.1109/TAES.2018.2852369
[35] Yu S, Yu X, Shirinzadeh B, Man Z. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 2005; 41(11): 1957-64.
https://doi.org/10.1016/j.automatica.2005.07.001
[36] Bhat SP, Bernstein DS. Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans Autom Control 1998; 43(5): 678-82.
https://doi.org/10.1109/9.668834
[37] Hong Y, Hu J, Gao L. Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 2006; 42(7): 1177-82.
https://doi.org/10.1016/j.automatica.2006.02.013
[38] Hardy GH, Littlewood JE, PoÅLlya G. Inequalities. Cambridge, U.K.: Cambridge University Press; 2001.
[39] Polycarpou MM, Ioannou PA. A robust adaptive nonlinear control design. Automatica 1996; 32(3): 423-7.
https://doi.org/10.1016/0005-1098(95)00147-6
[40] Qian C, Lin W. Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst Control Lett 2001; 42(3): 185-200.
https://doi.org/10.1016/S0167-6911(00)00089-X
[41] Paw YC. Synthesis and validation of flight control for UAV [Ph.D. dissertation]. Minneapolis, MN, USA: University of Minnesota; 2009.
[42] Raol JR, Singh J. Flight Mechanics Modeling and Analysis. 2nd ed. Boca Raton, FL: CRC PRESS; 2023.
https://doi.org/10.1201/9781003293514
[43] Lungu M. Auto-landing of fixed wing unmanned aerial vehicles using the backstepping control. ISA Trans 2019; 95: 194-210.
https://doi.org/10.1016/j.isatra.2019.05.019
[44] Xing Z, Zhang Y, Su CY. Active wind rejection control for a quadrotor UAV against unknown winds. IEEE Trans Aerosp Electron Syst 2023; 59(6): 8956-68.
