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Abstract: Aiming at the challenge of state estimation in the fractional nonlinear discrete stochastic systems, we propose
an adaptive fractional higher interpolatory cubature Kalman filter (AFHICKF). We develop the AFHICKF algorithm by
using higher-degree interpolatory cubature rules to fulfill the numerical integral computation under the framework of
Bayesian fractional filtering. Moreover, the adaptive process of AFHICKF is designed to address the state estimation
problem to fractional nonlinear discrete stochastic systems with unknown noise covariance through online covariance
estimation. Simulation results on reentry target tracking system verify the effectiveness, adaptiveness and superiority of

the proposed filter.
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1. INTRODUCTION

Nonlinear filtering has been intensively researched
in various applications such as tracking systems,
navigation and signal processing [1-4]. Due to
drawback of extended Kalman filter(EKF) [5], some
free-derivative Kalman filters have been developed,
such as unscented Kalman filter (UKF) [6], cubature
Kalman Filter (CKF) [7], interpolatory cubature Kalman
filters (ICKF) [8]. ICKF algorithms is developed based
on the third-degree interpolatory cubature rule (ICR). In
order to improve the estimation accuracy, higher-order
ICKF based on fifth-degree interpolatory cubature rule
is put forward.

In practice, the prior knowledge of process and
measurement noise covariance is usually unknown,
resulting in model mismatching. Adaptive estimation
approaches are an effective way to solve the model
mismatching problem. Mehra classified the adaptive
estimation approaches into four categories: Bayesian,
correlation, and maximum likelihood approaches and
covariance matching, which is prevalent in the literature
[9], such as adaptive Kalman filtering for dynamic
system with outliers [1, 3, 10, 11], variational Bayesian
based Kalman filtering [12], adaptive adjustment of
noise covariance based Kalman filter [13], sample-
based adaptive Kalman filtering [14], improved CKF [4],
adaptive square-root sigma-point Kalman [15] and
adaptive embedded CKF [16]. There are three types of
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covariance matching [17]: Q-adaptive filters for
covariance of process noise [11, 18], R-adaptive filter
for covariance of measurement noise [10, 17-19] and
QR-adaptive filters for covariances of process and
measurement noise [20-22]. Although these adaptive
filters can well address the model mismatching, they
still have some limitations, such as heavy computation
burden and non-positive matrices, and they do not
estimate  covariances of both process and
measurement noises online, which prevents them from
being utilized in reality. Akhlaghi et al. proposed
adaptive adjustment of noise covariance in Kalman
filter for dynamic state estimation, which estimated the
noise covariance online [13], and Kontoroupi et al. put
forward another method for online estimation noise
covariance using identification for joint state and noise
parameter estimation of nonlinear systems [23]. The
above filters obtain some promising conclusions and
have advantages such as improving performance and
maintaining the robustness. However, these adaptive
filters were developed based on EKF and UKF.

The filters mentioned above are developed to
estimate the states for integer-order nonlinear system.
Recently, the fractional filters has captured a
considerable attention and has been widely applied in
various fields [24], such as trajectory estimation [25].
Specially, fractional EKF (FEKF) [26] play an important
role in the state estimation. Then robust FEKFs are
proposed for fractional discrete nonlinear system over
lossy networks [27], with uncertain observations [28]
and for Lévy noises [29]. Moreover, the reduced order
Kalman filter [30] and fractional-order Kalman filters for
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colored process and measurement noises were also
investigated for continuous fractional nonlinear system
[31], and hybrid extended-unscented Kalman filters [32]
have also been introduced. However, computation of
Jacobian matrix is needed in the FEKF. Some
fractional free-derivative Kalman filters such as
fractional UKF(FUKF) [28], modified FUKF [33],
Adaptive FUKF [34], fractional cubature Kalman filter
(FCKF) [25, 35], fractional central difference Kalman
filter [36], and fractional interpolatory CKFs (FICKFs)
[37] have been proposed to expand fractional filters to
be more general and practical. Next, some adaptive
and robust fractional filters are developed for fractional
nonlinear system under uncertain noise statistics, such
as adaptive FUKF [38] for continuous-time nonlinear
fractional-order systems [39], the modified fractional
central difference Kalman filters designed for fractional
nonlinear stochastic system under colored noises [40],
robust fractional nonlinear state estimation against
random incomplete measurements and unknown noise
statistics [41], fractional higher interpolatory cubature
Kalman filter (FHICKF) [42], the fractional nonlinear
state estimation algorithm in non-Gaussian noise
environment [43], et al.

Inspired by the advantages of the above-mentioned
adaptive approaches and fractional filters, we develop
a novel AFHICKF to estimate state including the online
estimation of process and measurement noise
covariances. The AFHICKF algorithm use the higher-
degree interpolatory cubature rules to improve the state
estimation accuracy, and address unknown noise
covariance through online covariance estimation. To
the best of our knowledge, AFHICKF is the first kind of
filter to embrace system modeling with fractional order
calculus and online noise covariance estimation. This
paper has the two contributions.

. Aiming at most state estimation problems with
unknown noise covariance, we propose
AFHICKF algorithm including the online noise
covariance estimation process and calculate its
complexity;

. The simulations of reentry ballistic target (RBT)
tracking in the three-dimensional coordinate
system (3-D CS) have verified the effectiveness
of the proposed filters. Meanwhile, the impact of
various noise covariance on the performance of
AFHICKEF is analyzed.

The rest is organized as follows. We present
fractional nonlinear discrete-time stochastic systems in

Section 2. Then we describe fractional higher
interpolatory cubature filter (FHICKF) with Gaussian
noise and the AFHICKF with online noise covariance
estimation in Section 3 and 4, respectively. In Section
5, several simulations on the state estimation of the
RBT in the 3-D CS are given to verify the effectiveness,
adaptiveness and superiority of the proposed filters.
Furthermore, the influence of various noise covariance
on the performance of AFHICKF is analyzed. Finally,
the conclusion is summarized, and future work is
prospected in Section 6.

2. FRACTIONAL NONLINEAR DISCRETE-TIME
STOCHASTIC SYSTEMS

The definition of Grinwald—Letnikov(G-L) fractional
difference is described as:

1 4 i a
a J 1
A“x, = jgo(—l) ( i }rk_j (1)

where A is the operator of the fractional order system,
a €R is the fractional difference order, R is the set of
real numbers, & is the sampling interval, and k is the
sampling number for which the derivative is calculated.

The coefficient( Of ]can be calculated as:
J
1 if j=0
a
= “D-(a—-j 2
(j.) a(@a=D-(a=j+D) ., (2)

J!

From Eq. (2), we can obtain the discrete equivalent
of derivative (whena >0), integration (whena <0), and
the original function (whena =0).

Based on the definition of G-L fractional difference,
the general fractional nonlinear discrete-time stochastic
systems with Gaussian noise can be described as
follows:

A, = f(n)+w,, (3)
nk = AYm - E;(—l)jyjm_j (4)
01( =h(n)+v, (%)

Y =diag|| “ || @ ®)
| i)
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wheren, €R"is the state vector, f(-)and h(-)are the
nonlinear state equation and nonlinear measurement
respectively. 9, ER™ s

equation, measurement.

al,az,---,an(i€{1,2,~~~,nn}) are fractional system

orders. w, ,andv, are process noise and measurement

noise, which are uncorrelated Gaussian noises with
zero means and the corresponding covariances are

O, and N,. We denote Z  as the set of
measurements up to time instant .

To simplify the analysis, we use the following two
assumptions [26], which have been widely used in the
literature, such as [25, 36, 37].

Assumption 1: E[nk—j‘Zkk]EE[nk—j’Z

l:kf/']

This assumption implies that the state estimation at
instant time k- can be evaluated by using

measurements Z, ., and will not be updated using the

newer measurements Z,_, .

Assumption 2: E[(, -n, X3, -n, ) |=0.4, =,

The simplifying assumption implies the expected
values of the terms (), -1, X(4, -7, ) (I, =1,) are zero
when E[’?,’LT]=0-

3. FRACTIONAL
CUBATURE FILTER

HIGHER INTERPOLATORY

Bayesian fractional filters can be represented as the
weighted Gaussian integral [8]. The product of a
nonlinear function g(n) and a Gaussian probability
density function (PDF) AN (1;0,7) with zero mean and
identity covariance is described as:

Integral[g]= [ g(x)N (1:0,1)dn (7)

where Integral[g] is an integration and g(n) is an
arbitrary non-linear function of »dimensional column
vector. A 2m+1th-degree fully symmetric ICR Q""" (g)

for a n-dimensional Gaussian weighted integral can be
used to approximate Integral[g] as follows [44]:

Integral[g]~Q""[g]= Y W\""g[A] 8)

pepmn

Here, P denotes a set of all distinct »-partitions
of the integers {Olm} defined as

mzp z--zp =0,

n

R den) @

Here, p is a set of the integers {0,1,-~~,m} and

|p|=E_"=1p,..)L is defined as a generator composed by
[Ap ,)»pﬁ;n,)up 1, Ap 20,4, =0. The fully symmetric sum
g[A] is defined as

g[A]= E zg[sl)uql ’Sz}“qzﬂ”"sn)“q,,] (10)

qEHp s

where deenotes all distinct permutations of p and
the inner sum is taken over all of the sign combinations
that occur when s ==1 for those values of iwhere
A, =0. W™ denotes a set of weights of generator

[A], and is given by

n a
W;m,n) - 2—1( E # (1 1)

k+p 2 2
l<m—p| i=1 | | (A=A
J=0.=p; P; J

where K is the number of non-zero entries in p and
a,=1, and q, is defined as:

i-1
4= [er [ [or-2ds (1>0) (12)
N2 U =0

We can use the arbitrary degree ICR in (8) to
numerically compute the Gaussian weighted integrals
in Gaussian filters. In the paper, in order to further
improve the accuracy of computing integral in (8), we
use the higher-degree ICR (HICR) namely, fifth-degree
ICR to develop the proposed fractional filters. The
HICR corresponds to m=2 in (8), that is, Q"" is
polynomial with a HICR, and we know |p|<2, then

lpl=0, |pl=lor [pl=2.

If |pl=0, the basic higher interpolatory cubature
(HICP) is & =[0]=[0,0,---,0]', and its

corresponding weight (w,=W,>"") is calculated as

point

2
n, n(n—1)+ n(3-A;)
AT 28 AR

1 1

W =1- (13)
If |pl=la, the basic HICPs are calculated as:
& ={A1ei,—klei}(i=1,~--,n), e, denotes the i-th column of

a unit matrix. Then its corresponding weights
(w, =W>") can be calculated as
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ew_1]1 3-A2

1
—t——1—t(n=-D|-— 14
Tt et )( Aﬁ) a

If |pl=2, p,=p,=1(i=j) or p,=1 is obtained.
When p, =p =1(i=j), the basic HICPs are calculated
as §i={)\.s -AS,AS

S=AS, A, 2,—1132}, the points sets (s, and s, )

are given by (15) and (16), respectively

s]é{el.+ej:i<j,i,j=1,2,~~~,n} (15)
s,={e,—e i< j,i,j=12,n} (16)

Their corresponding weights (w, =W*"") can be
calculated as

n 1
I/VZ(Z, ) =W (17)

1

When p =2, the basic HICPs are calculated
as§[={)»2ei,

weights (w, =W,*") is calculated as:

—)Lze,}(i=1,~--,n), and their corresponding

2n) _ 3_)L12 (18)
3 2 2 2
20 (A =A))

Here, the two parameters ( A4, A, ) are set as two
ways, one is A =1356 and A, =2,857, the other is
A, =2,857 and A,=1,356 the two parameters selected
is reasonable because the proposed the HICR with this

choice of free parameters can achieve higher filtering
accuracy [8].

According to the description above and the full
symmetric property formulated in Eq.(10), the HICR
can be formulated as:

Integral(g) ~ iw,-g(&) =Wy gl0]+ Wl‘z’”)i(g(/l]eih g(-2e))

i=1 i=1
n(n=1)/2

+WE0 E [g()»1 s+ g(=A, s+ g(A,s0) + g(=4, s(z'))]

i=1

S (ge)+ g(-he)

i=l

(19)

where w*", W w?"and W*"are given in
Eq.(13)-(14), Eq.(17) and Eq.(18). Here,
N(N =2n*>+2n+1) is the total number of points and
.The product of a nonlinear function g(n) and a

Gaussian probability density function (PDF) N (1;1), P)

with mean x and covariance P [45] can be expressed
as:

Integral, () = [ )N (1, P)dx (20)

Using Eq.(19) and (20) can be approximated as [8]:
N

Integral[g] = Zwl_g(Sf;'i +1) (21)
i=1

where P=SS". S is a square root of the covariance
Pand it can be obtained by the Cholesky
decomposition.

Above all, we can apply the HICR to approximately
calculate the integrals. Then the FHICKF can be
established for the fractional-order discrete nonlinear
systems described in Eq.(3)-(5). The FHICKF algorithm
is described as follows.

Algorithm 1: FHICKF algorithm

Sept 1. The initial state (7,) and covariance (F)).

Repeat Step 2-3 for k=1,2,---,M,( M,is the number of
measurements).

Step 2. Assuming 7,  and P,_ are predicted state
and covariance at k-1 time instant, respectively, and
P =S5/

k=1"k-1"

2.1. Evaluate HICPs (i=1,2, -
them through

,N ) and propagate

i

X',kfl = Sk—lgi + ﬁk—] (22)

X, =f(X,) (23)

ik-1
2.2. The predicted state 7,

Firstly, we evaluate A'7, using the Eq.(21).

" 0X], (24)

i

A'q, =
Then the state prediction 7, of 5, is obtained by
T=AT -3 )Y, (25)

2.3. The prediction covariance P,

We evaluate P*, P™and P using the Eq.(21)
and obtain their approximate values:
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N * — * —

P,{AA = Ei=1 w, [(X,-wk - AYm )(Xi,k - AYm )T]"' Qk—l (26)
N A * —

P =3 o[, )0, - AT, ] (27)
N * — A

B =3 o A, )] (@)

The prediction covariance (I_’k ) calculated as

B=PY+X B4R +3 Y RY, (29)

k=)

Step 3. Factorize covariance

I_)k = §k§kr

the predicted

3.1 Calculate HICPs and propagate them through
measurement equation

Y, =SE+7, (30)
Y, =h(Y,) (31)

3.2. Evaluate the predicted measurement, cross-
covariance and innovation covariance as the following:

— N "

Ge= 2.0 (32)
N er =

Pm?,k = EH wiXi,kYi,i _nkﬁkT (33)

Pmm = Ei\:l in:-‘,k Y:‘Z - 5/(5[ + Nk (34)

3.3. Evaluate the Kalman gain, estate estimation
and corresponding covariance using Eq. (35)-(37).

Kk = Pnﬁ,kpl;l;,k (35)
ﬁk =1, +Kk(0k _Ek) (36)
B =F-KF, K] (37)

Here 9,.,P,,.P,, and the predicted

Y.k’ Tk Kk are

measurement, the covariance matrix of the innovation,
cross covariance and Kalman gain, 7, and P, are
state estimation and corresponding covariance.

4, ADAPTIVE FRACTIONAL
INTERPOLATORY KALMAN FILTER

HIGHER

In practice, the covariances of the process and
measurement noise are usually unknown. In this
section, we propose the AFHICKF to deal with
unknown covariances of process and measurement

noise online using the covariance matching strategy,
which tunes the covariance matrix of the innovation or
residual based on their theoretical values. Furthermore,
the numerical complexity of AFHICKF is analyzed.

4.1. Process of Adaptive Noise Covariances

The innovation error is the difference between the
actual measurement and its predicted value, and the
residual error is the difference between the actual
measurement and its estimated value. The innovation

error (g, ) and residual error (d, ) can be calculated,
respectively:

g, =9, -0, (38)
(39)

Based on the above definitions, the process noise
covariance estimation (Q, ) and measurement noise

covariance estimation (Nk) can be estimated as the
following.

4.1.1. Residual Based Adaptive Estimation of N,

Reformulate the innovation covariance in the

Eq.(34):

Ijl‘h‘},k = I)s,k +N, (40)

N * * a a

Here P, =El_=lw[Yika’.£—ﬁkﬁf .

The innovation based approach estimates the
measurement noise covariance matrix R, using Eq.(40)
1:

R, = R‘h‘},k _Pyk (41)

Note that theoretically speaking, N, should be

positive definite because it is a covariance matrix. Yet,
its estimation in Eq.(41) could not guarantee that the

estimated N, be a positive definite matrix because

the N is estimated by subtracting the two positive

definite matrixes. Therefore, to ensure a positive
definite matrix, the residual based adaptive approach

proposed by [46] is used to estimate N,. Meanwhile,
we refine the adaptive process using HICR.

Factorize the covariance P, =SS/

.S, , compute the

estimated measurement 19k, the estimated

interpolatory cubature points and the propagated
interpolatory cubature points as:
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Y, =SE+n, (42)
Y =h(Y,,) (43)
9, = El Y (44)

AR A (45)

The residual covariance can be evaluated as
follows [17]:

A

Eld, ] N, -P, (46)

s,k

We obtain the following predicted ]\_/k:
R =E[dd]1+P, (47)

To implement Eq.(47), the expectation operation on
E[d d/] is approximated by averaging E[d,d/]over

time. Instead of the using the moving window, we
introduces a forgetting factor 0<a =<1 in Eq.(48) to

adaptively estimate N, .
Nk =aNl(—l +(1_a)]\7k (48)

Note that a larger a puts more weights on previous
estimates and therefore incurs less fluctuation of R,
and longer time delays to catch up with changes.

4.1.2. Innovation Based Adaptive Estimation of O,

To adaptively estimate the @, ,, we can calculate
the process noise based on Eq.(3):

- f )+ (DY, (49)
Then we obtain:

W =i, = S0, )+ Y (<)Y =i, T, = Ke,  (80)
Therefore,

O, =EW,_W 1=E[K,e K 1=K Eleel K] (51)

To implement Eq.(51), the expectation operation on
Elee,] is approximated by averaging E[e,e
time. Similar to the previous subsection 4.1.1, we use a
forgetting factor a to average estimates of O, over

T
. jover

time, and evaluated the 0, as:

Qk = an—l + (1 - a)Qk_] (52)

the state

estimation process can be recursively implemented.
We summarize the AFHICKF in Algorithm 1.

Given the initial condition (7, F)),

Algorithm 1. AFHICKF algorithm

Given the state estimate 7, and its associated error

covariance F, at time k=0, compute the state

estimate at every time £k, starting with the
approximation 7, ,, P,_ of mean and covariance of 7, |

given Z, ,
Step 1: Initialize parameters: 7, P, , Qo R
For k=1,2,---, M,

Step 2. Time update

Calculate the state prediction 77, and covarianceﬁk
using Eq.(25) and Eq. (29).

Step 3. Measurement update

Step 3.1 Calculate the predicted measurement, the
cross-covariance and innovation covariance using
Eq.(32)-(34).

Step 3.2 Calculate the state estimate 17, and

covariance P, using Eq.(36)-(37).

Step 4. adaptive process for the process and
measurement noise covariance.

dk =ﬂk_ﬂk

Qk = an—l +(1- a)(KkE"ST T)
R =ak_+(1-a)dd] +P,)

End For

4.2. Computational Complexity

Now we use floating-point operations (flops) to
analyze the numerical complexity of AFHICKF. The
basic arithmetic operations such as matrix addition,
matrix subtraction, matrix multiplication, inverse of
matrix, or square root can be referred to reference [36].
The specific flops of each step are shown in Table 1.
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Table 1: Computational Complexity of each Step
Step Flops
i 2n3 +8%n3 +(7+ 21«"(;1"));1”2 +(2F(n)+2L+2)n, +F(n,)
B, 6n3+6n$+(L+4)ns
K 2ny + 6%@ +(2m +2H(n,,m )+5)n +(2m+2+2H(n, ,m ), +H(n, ,m )
B (6m, =2)n+(6m ~2)n’ +(Sm ~2)n,
Poos (6m’ - 2m)n$ + (6m;f =2m)n, + 6mf —2m,
K, (Zm)% —mv)nw +m3
7, @m +Dn,
k 2m my +(2m) —m )n,
0, 72+ (4m? =2m )n, +m,
Rk 20t + 6%@ + 5n3 + (6m§ + 2H(n”,m‘_))n2 + (2H(n,},m‘,)+ 2+ 6mi)nn +H(n, ,m)+ Sm: -m

Here, L is memory length (in Eq. (4), n, is related to

all of the previous state and has the long memory
property) when FHICKF is implemented. F(n) and

H(n,m ) are assumed to be the required flops of two

nonlinear functions f(n,,) and A(n,), respectively.

Their exact computational complexity is hard to
evaluate but significant. The total complexity of
AFHICKEF is obtained by:

T e =121, +(6m +25)n +(20+2F (n, )+
L+4H(n ,m )+12m’ +8m )n:
+2F(n,)+2L+5+ H(n ,m )+3m +20m*)n, +

3 2
F(n )+2H(n ,m)+m +14m —2m,

(53)

The numerical complexity of the AFHICKF is
max {O(n),0(m?),0(n’ F (n, )),0(n’ H(m,,n, ))} .
Based on the below simulation analysis, the

proposed AFHICKF exhibits a slightly increase in
computational complexity relative to FIHCKF, FCKF,
FICKF and FUKF, but it has the more estimation
accuracy and robustness.

5. CASE STUDIES: RBT TRACKING IN THE 3-D CS

Now we apply the FHICKF and AFHICKF to the
RBT tracking in the 3-D CS [47]. Firstly, we analyze the
influence of fractional order on FHICKF. Then we have
compared the performance of AFHICKF with that of
FHICKF, moreover, we also have compared the
performance of the AFHICKF with FUKF [28], FCKF

[25] and FICKF [37]. Lastly, we analyze the influence of
initial process and measurement noise covariance on
the performance of AFHICKF. The platform used in the
simulations is a desktop computer with Intel(R) Core
(TM) i7-2620M CPU, 2.70 GHz, 6.0 GB RAM, Windows
10 professional (64 bit).

5.1. State Equation of RBT in the 3-D CS

In this paper, we consider the state estimation
problem of RBT from a radar. The radar is located at
the surface of the Earth (at the Os point), the relative
locations of the RBT (at the P point) and radar are
depicted in Figure 1. We show two orthogonal
coordinate systems, one is the Earth-centered inertial
coordinate system (ECI-CS, Ox,y,z, ), which is a right-
handed system with the origin O at the Earth center,
axis Ox, pointing in the vernal equinox direction, axis

Oz, pointing in the direction of the North Pole N, and its

fundamental plane Ox,y, coincides with the Earth’s
equatorial plane. The other is orthogonal coordinate
reference system named East-North-Up coordinates
system (ENU-CS, O.xyz), which has its origin at the

location of the radar, zis directed along the local
vertical and x and y lie in a local horizontal plane, with

x pointing east and y pointing north.

We have derived the kinematics of RBT with
unknown ballistic coefficient under the two hypotheses,
which are that the Earth is spherical and non-rotating
and that the forces acting on the target are gravity, and
drag [47]. We model the kinematics of the RBT in the
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Figure 1: Geometry of radar and RBT.

ENU-CS by the following fractional discrete-time
stochastic nonlinear dynamic state equation:

k .
=@+ Gy, )= DY 4w (54)
Here, n, =[x, %,y 7, 2 % BJis RBTs state,
B, (kg/m*) is the ballistic coefficient,
and @ = Diaglg.p..1.0=| T |,
2
G =[diag[t, 7,710t =| | /2 , and Y(x, ) is
T
described as:
)y oy
k-1 k-1
2/3/(—1 rk3—]
p(h_,) wy,
Yix, )=| -V h - (55)
k-1 2ﬁk—1 k-1 2 k-1 ”;3.1
—p(hk_l)Vk A u(zk 1+Re)
-1 “k- 3
zﬁk—l rk—l

2 2 2 [.z .2 .2
here, T = \/xk—l Vi +(Z/r—l +Re) ’ Vk—l R R

and h_ =r_—-R . T(in s)is the time interval between
u(=3.986005x10"m’ / s*)
and R (=6371004m) are Earth's gravitational constant

the radar measurements,

and Earth radius, respectively. p(h)(kg/m3) is the air

density. Below 90km at height, it can be approximately
modeled as an exponentially decaying function of

height, i.e.p=ce (¢, are constant
¢, =1227,c,=1.093x 107 for
h<9144m , and ¢, =1.754,c, = 1.49x10™ for h=9144m)

[48]. Process noise is modeled as w, ~ N(0,0,). We
use the fractional nonlinear discrete-time stochastic

(dimensionless),

systems for describing RBT’s state equation in the
Eq.(7) to compensate for the loss of the useful state
information due to the hypothesis and obtain more
accurate modeling.

The measurements

including the rangeR,,

elevation E, and azimuth 4, are collected by the radar.

The measurement the ENU-CS is
described by

equation in

G, =h(n,)+v, (56)
where

b=l R E 4 I,

h(xk)=[ x,f+y,f+z: arctanzk/w/xz+y,f arctanyk/xk ]T

, SO

R, =1[xi+yi+zi +V, (57)
E, =arctanzk/‘/xi+yz +Vv, (58)

A, =arctanyk/xk +V, (59)

T
Measurement processv, =[ v, v, v, |is

modeled as the zero-mean white Gaussian noise with
unknown covariance matrix N,, o,,0, and o, are

the error standard deviations of range, elevation and
azimuth. It is independent of the process noise w, and

initial state x,, .

In the paper, we use the two-performance metrics
namely, root mean-square error (RMSE) and average
accumulated mean-square root error (AMSRE)), to
evaluate the performance of the proposed filters. The
definition of RMSE and AMSRE in position, velocity
and ballistic coefficient at & time instant can be
referred as in [47]. The results in the following
simulations were obtained by RMSE and AMSRE
averaged over 100 independent Monte Carlo runs.

5.2. Simulations and Analysis

5.2.1. Comparison of AFHICKF with FHICKF

In this subsection, we compare the performance of
AFHICKF with that of FHICKF when they are applied to
the state estimation of RBT tracking with unknown

A

noise covariances. Here, the parameters X , F, are the

same as those in [42], the fractional order (a) is set as
10, which has been shown that the FHICKF has
better performance when the fractional order is set as a
=10°. The initial estimated covariances are selected as



88 Journal of Intelligent Aeronautical Systems and Sustainable Flight Technologies, 2025, 1

Mu et al.

Qk=5*Qk and R =100%*R_, the covariances of true

process and measurement noise (Q, and R ) are the

same as those in [42]. Figures 2-5 shows the RMSEs
of FHICKF and AFHICKF in position, velocity, and the
ballistic coefficient.
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Figure 2: Position RMSE of FHICKF and AFHICKF.
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Figure 4: Ballistic coefficient RMSE of FHICKF and

AFHICKF.

Obviously, in terms of effectiveness, Figures 2-4
shows the higher accuracy of AFHICKF, compared with

that of FHICKF when the initial noise covariances are
far from the real values.

Moreover, we compute the AMSREp (AMSRE in
position), AMSREv (AMSRE in velocity) and AMSREb
(AMSRE in ballistic coefficient) for FHICKF and
AFHICKEF, respectively, as shown in Figure 5. From
Figure 5, the simulation results have demonstrated the
prominent improvement over AFHICKF because the
AFHICKF incorporates the adaptive procedures of
estimating the process and measurement noise
covariance. The simulations demonstrate that the
AFHICKF is an effective method to solve state
estimation problem of RBT tracking with unknown
noise covariances.

900 T T T

660 | I FHICKF | |
I AFHICKF

700 b
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400
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Figure 5: AMSRE of FHICKF and AFHICKF.

5.2.2. Comparison of AFHICKF with FUKF, FCKF
and FICKF

AMSRE 3

In this subsection, we compare the performance of
AFHICKF with that of FUKF, FCKF and FICKF when
they are applied to the state estimation of RBT tracking
with unknown noise covariances. Here, the parameters

%, F,, a are the same as those in subsection 5.2.1,

and the covariances (Q,,R,) and estimated
1800 T \ T T T T T T
A FUKF
1400 | A ke |
A A FICKF
1200 | Py AFHICKF | 4
g‘ 1000 |
E 800
E 600
400 F
200
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Figure 6: Position RMSE of various filters.
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covariances (Qk ,f?k) of true process and measurement
noise are the same as those in subsection 5.2.1.

From Figures 6-8, we can see RMSEs of AFHICKF
are the smallest, compared with FUKF, FCKF and
FICKF. Apparently, the simulations demonstrate the
effectiveness and better performance of AFHICKF.
Besides, as shown in Figures 6-8, FUKF, FCKF and
FICKF have almost the same performance.
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Figure 7: Velocity RMSE of various filters.
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Figure 8: Ballistic coefficient RMSE of various filters.

Moreover, we compute the AMSREp, AMSREv and
AMSRED for AFHICKF and FUKF, FCKF and FICKF,
respectively, as listed in Table 2. From Table 2, the
simulation results have demonstrated the prominent
improvement over AFHICKF because the AFHICKF
incorporates the adaptive procedures of estimating the
process and measurement noise covariance.

5.2.4. Q and R’s Adaptiveness on the Performance
of AFHICKF

To evaluate the impact of O, and R, on the
estimation accuracy, we set O, and R, by scaling Q,
and R, (they are the true covariances in subsection

5.2.1). Here, the parameters %, F,, a are the same as

those in subsection 5.2.2. As shown in Tables 3-6, the
scaling factors are the multiples of 100. The ARMSEs
of AFHICKF in position and velocity during entire
tracking time are listed in Tables 3-4, and the ARMSEs
of AFHICKF in position, velocity after 5 seconds of
tracking time are listed in Tables 5-6.

Table 3: ARMSE in Position during Entire Tracking Time

AMSRE 0.01*Qo Qo 100*Qo
0.01"Ro 99.83 99.83 99.82

Ro 194.48 194.48 194.25
100*Ro 414.71 414.70 414.16

Table 4: ARMSE in Velocity during Entire Tracking Time

AMSRE 0.01*Qo Qo 100*Qo
0.01"Ro 104.92 104.92 104.84

Ro 143.10 143.10 142.99
100" Ry 188.34 188.33 188.23

Table 5: ARMSE in Position after 5 Seconds of Tracking

Time
AMSRE 0.01*Q, Qo 100*Q,
0.01*Rq 86.56 86.56 86.57
Ro 84.03 84.03 84.04
100*R, 103.27 103.27 102.90

Table 6: ARMSE in Velocity after 5 Seconds of Tracking

Time
AMSRE 0.01*Q, Qo Qo
0.01*Rq 22.16 22.16 22.18
Ro 19.78 19.78 19.77
100*R, 23.88 23.88 23.78

Table 2: AMSRE for Various Filters
Various filters AMSRE, AMSRE, AMSRE,
FUKF 1783.48 280.34 150.60
FCKF 1783.46 280.34 150.63
FICKF 1781.10 280.41 150.64
AFHICKF 257.03 159.77 144 11

It can be observed in Tables 3 and 5 that the
ARMSE in position sharply decreases after 5 seconds
of tracking time. This observation indicates that the
adaptive process of covariance in the AFHICKF quickly
eliminates the influence of deviation from true value
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error on state estimation. From Tables 4 and 6, we also
have the same result from ARMSE in velocity. The
performance improvement of the AFHICKF is more
significant.

Moreover, we show the RMSEs for AFHICKF in
position and velocity after 5 seconds of the tracking
process in Figures 9-10. We see RMSEs of AFHICKF
in position and velocity are stable after 8 seconds of
the tracking process when the initial noise and
measurement covariance are various. Moreover, from
simulations we also find that the RMSE of AFHICKF in
ballistic coefficient has been relatively stable during the
whole tracking process. Apparently, the simulations
demonstrate the effectiveness and better performance
of AFHICKF.
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Figure 9: Position RMSE of AFHICKF with various Q and R.

200

—Qk:U.U1'QO,Rk=D.D1'RO .|
Q,=0.01"Q, R =R,
| e Qk:0'01.QD'RkZ1OO.R:} i1

180 F

- =
L= = o
L=} (=] L=]

Velocity RMSE
S
53

__.
& =
bind S
il S spp—— L

] P
(=] (=1
T
-,
i
[!
1
£
?
&
|

(=]

5 10 15 20 25 30 35 40 45 50 55
Time(s)

Figure 10: Velocity RMSE of AFHICKF with various Q and R.

6. CONCLUSION

The paper addresses the issue of state estimation
for fractional nonlinear discrete stochastic systems with
unknown noise covariances. To tackle this challenge,

we propose the AFHICKF algorithms which includes
process of online noise covariance estimation to
estimate state. We apply AFHICKF to reentry ballistic
target tracking problems with unknown noise
covariance. The simulations demonstrate the AFHICKF
has an improved performance, compared with the
state-of-the-art fractional filters. Moreover, simulations
have also shown robustness and adaptiveness when
the various noise covariance is set to be larger or
smaller than the true value. However, the
implementation of AFHICKF algorithm involves matrix
computations, which may carry the risk of matrix
singularity. Moving forward, we will use square-root
method to study the stability of AFHICKF algorithms
and state estimation problems for fractional-order
discrete-time non-linear systems with missing
measurement phenomenon.
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