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Abstract: Aiming at the challenge of state estimation in the fractional nonlinear discrete stochastic systems, we propose 
an adaptive fractional higher interpolatory cubature Kalman filter (AFHICKF). We develop the AFHICKF algorithm by 
using higher-degree interpolatory cubature rules to fulfill the numerical integral computation under the framework of 
Bayesian fractional filtering. Moreover, the adaptive process of AFHICKF is designed to address the state estimation 
problem to fractional nonlinear discrete stochastic systems with unknown noise covariance through online covariance 
estimation. Simulation results on reentry target tracking system verify the effectiveness, adaptiveness and superiority of 
the proposed filter. 
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1. INTRODUCTION 

Nonlinear filtering has been intensively researched 
in various applications such as tracking systems, 
navigation and signal processing [1-4]. Due to 
drawback of extended Kalman filter(EKF) [5], some 
free-derivative Kalman filters have been developed, 
such as unscented Kalman filter (UKF) [6],	
   cubature 
Kalman Filter (CKF) [7], interpolatory cubature Kalman 
filters (ICKF) [8]. ICKF algorithms is developed based 
on the third-degree interpolatory cubature rule (ICR). In 
order to improve the estimation accuracy, higher-order 
ICKF based on fifth-degree interpolatory cubature rule 
is put forward. 

In practice, the prior knowledge of process and 
measurement noise covariance is usually unknown, 
resulting in model mismatching. Adaptive estimation 
approaches are an effective way to solve the model 
mismatching problem. Mehra classified the adaptive 
estimation approaches into four categories: Bayesian, 
correlation, and maximum likelihood approaches and 
covariance matching, which is prevalent in the literature 
[9], such as adaptive Kalman filtering for dynamic 
system with outliers [1, 3, 10, 11], variational Bayesian 
based Kalman filtering [12], adaptive adjustment of 
noise covariance based Kalman filter [13], sample-
based adaptive Kalman filtering [14], improved CKF [4], 
adaptive square-root sigma-point Kalman [15] and 
adaptive embedded CKF [16]. There are three types of  
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covariance matching [17]: Q-adaptive filters for 
covariance of process noise [11, 18], R-adaptive filter 
for covariance of measurement noise [10, 17-19] and 
QR-adaptive filters for covariances of process and 
measurement noise [20-22]. Although these adaptive 
filters can well address the model mismatching, they 
still have some limitations, such as heavy computation 
burden and non-positive matrices, and they do not 
estimate covariances of both process and 
measurement noises online, which prevents them from 
being utilized in reality. Akhlaghi et al. proposed 
adaptive adjustment of noise covariance in Kalman 
filter for dynamic state estimation, which estimated the 
noise covariance online [13], and Kontoroupi et al. put 
forward another method for online estimation noise 
covariance using identification for joint state and noise 
parameter estimation of nonlinear systems [23]. The 
above filters obtain some promising conclusions and 
have advantages such as improving performance and 
maintaining the robustness. However, these adaptive 
filters were developed based on EKF and UKF. 

The filters mentioned above are developed to 
estimate the states for integer-order nonlinear system. 
Recently, the fractional filters has captured a 
considerable attention and has been widely applied in 
various fields [24], such as trajectory estimation [25]. 
Specially, fractional EKF (FEKF) [26] play an important 
role in the state estimation. Then robust FEKFs are 
proposed for fractional discrete nonlinear system over 
lossy networks [27], with uncertain observations [28] 
and for Lévy noises [29]. Moreover, the reduced order 
Kalman filter [30] and fractional-order Kalman filters for 
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colored process and measurement noises were also 
investigated for continuous fractional nonlinear system 
[31], and hybrid extended-unscented Kalman filters [32] 
have also been introduced. However, computation of 
Jacobian matrix is needed in the FEKF. Some 
fractional free-derivative Kalman filters such as 
fractional UKF(FUKF) [28], modified FUKF [33], 
Adaptive FUKF [34], fractional cubature Kalman filter 
(FCKF) [25, 35], fractional central difference Kalman 
filter [36], and fractional interpolatory CKFs (FICKFs) 
[37] have been proposed to expand fractional filters to 
be more general and practical. Next, some adaptive 
and robust fractional filters are developed for fractional 
nonlinear system under uncertain noise statistics, such 
as adaptive FUKF [38] for continuous-time nonlinear 
fractional-order systems [39], the modified fractional 
central difference Kalman filters designed for fractional 
nonlinear stochastic system under colored noises [40], 
robust fractional nonlinear state estimation against 
random incomplete measurements and unknown noise 
statistics [41], fractional higher interpolatory cubature 
Kalman filter (FHICKF) [42], the fractional nonlinear 
state estimation algorithm in non-Gaussian noise 
environment [43], et al. 

Inspired by the advantages of the above-mentioned 
adaptive approaches and fractional filters, we develop 
a novel AFHICKF to estimate state including the online 
estimation of process and measurement noise 
covariances. The AFHICKF algorithm use the higher-
degree interpolatory cubature rules to improve the state 
estimation accuracy, and address unknown noise 
covariance through online covariance estimation. To 
the best of our knowledge, AFHICKF is the first kind of 
filter to embrace system modeling with fractional order 
calculus and online noise covariance estimation. This 
paper has the two contributions. 

• Aiming at most state estimation problems with 
unknown noise covariance, we propose 
AFHICKF algorithm including the online noise 
covariance estimation process and calculate its 
complexity; 

• The simulations of reentry ballistic target (RBT) 
tracking in the three-dimensional coordinate 
system (3-D CS) have verified the effectiveness 
of the proposed filters. Meanwhile, the impact of 
various noise covariance on the performance of 
AFHICKF is analyzed. 

The rest is organized as follows. We present 
fractional nonlinear discrete-time stochastic systems in 

Section 2. Then we describe fractional higher 
interpolatory cubature filter (FHICKF) with Gaussian 
noise and the AFHICKF with online noise covariance 
estimation in Section 3 and 4, respectively. In Section 
5, several simulations on the state estimation of the 
RBT in the 3-D CS are given to verify the effectiveness, 
adaptiveness and superiority of the proposed filters. 
Furthermore, the influence of various noise covariance 
on the performance of AFHICKF is analyzed. Finally, 
the conclusion is summarized, and future work is 
prospected in Section 6. 

2. FRACTIONAL NONLINEAR DISCRETE-TIME 
STOCHASTIC SYSTEMS 

The definition of Grünwald–Letnikov(G-L) fractional 
difference is described as: 
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where Δ  is the operator of the fractional order system, 
 α ∈   is the fractional difference order,    is the set of 
real numbers,  h  is the sampling interval, and  k  is the 
sampling number for which the derivative is calculated. 
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From Eq. (2), we can obtain the discrete equivalent 
of derivative (when α > 0 ), integration (when α < 0 ), and 
the original function (when α = 0 ). 

Based on the definition of G-L fractional difference, 
the general fractional nonlinear discrete-time stochastic 
systems with Gaussian noise can be described as 
follows: 
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where  ηk ∈ 
nη is the state vector,  f (⋅) and   h(⋅) are the 

nonlinear state equation and nonlinear measurement 
equation, respectively.  ϑ k ∈ 

my  is measurement. 

   
α1,α2 ,,αnη

(
   
i ∈ 1,2,,nη{ } ) are fractional system 

orders.  wk−1 and vk  are process noise and measurement 
noise, which are uncorrelated Gaussian noises with 
zero means and the corresponding covariances are 

  Qk−1  and  Nk . We denote    Z 1:k  as the set of 
measurements up to time instant  k . 

To simplify the analysis, we use the following two 
assumptions [26], which have been widely used in the 
literature, such as [25, 36, 37]. 

Assumption 1: 
   E[ηk− j Z1:k ]≅ E[ηk− j Z1:k− j ]  

This assumption implies that the state estimation at 
instant time  k − j  can be evaluated by using 
measurements

   Z 1:k− j , and will not be updated using the 

newer measurements
   Z k− j:k . 

Assumption 2: 
  
E (η̂l1

−ηl2
)((η̂l1

−ηl2
))T⎡

⎣
⎤
⎦= 0,l1 ≠ l2  

The simplifying assumption implies the expected 
values of the terms 

  
(η̂l1

−ηl1
)((η̂l2

−ηl2
))T ( 1 2l l≠ ) are zero 

when   E[ηlηt
T ]= 0 . 

3. FRACTIONAL HIGHER INTERPOLATORY 
CUBATURE FILTER 

Bayesian fractional filters can be represented as the 
weighted Gaussian integral [8]. The product of a 
nonlinear function   g(η)  and a Gaussian probability 
density function (PDF)    N (η;0, I )  with zero mean and 
identity covariance is described as:  

   
Integral[g]= g(x)N (η;0, I )dη∫          (7) 

where   Integral[g]  is an integration and   g(η)  is an 
arbitrary non-linear function of  n dimensional column 
vector. A   2m+1 th-degree fully symmetric ICR   Ω

(m,n) (g)  
for a  n -dimensional Gaussian weighted integral can be 
used to approximate   Integral[g]  as follows [44]: 

  
Integral[g] ≈ Ω(m,n)[g]= Wp

(m,n)g[λ]
p∈P( m ,n )

∑         (8) 

Here,   P(m,n) denotes a set of all distinct  n -partitions 
of the integers 

   
0,1,,m{ } defined as 

   
P(n,m) = ( p1,, pn ) m ≥ p1 ≥≥ pn ≥ 0, p ≤ m{ }        (9) 

Here,  p  is a set of the integers 
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n
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where 
 
Π p denotes all distinct permutations of  p  and 

the inner sum is taken over all of the sign combinations 
that occur when   si =±1  for those values of  i where 

  
λqi

≠ 0 . 
  
Wp

(m,n)  denotes a set of weights of generator 

 [λ] , and is given by 
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where  K is the number of non-zero entries in  p  and 

  a0 =1 , and  ai is defined as: 

  
ai =

1
2π

e−η
2 /2

−∞

+∞

∫ (η2 −λ j
2 )dx    

j=0

i−1
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We can use the arbitrary degree ICR in (8) to 
numerically compute the Gaussian weighted integrals 
in Gaussian filters. In the paper, in order to further 
improve the accuracy of computing integral in (8), we 
use the higher-degree ICR (HICR) namely, fifth-degree 
ICR to develop the proposed fractional filters. The 
HICR corresponds to   m = 2  in (8), that is,   Ω(2,n)  is 
polynomial with a HICR, and we know   | p |≤ 2 , then 

  | p |= 0 ,   | p |=1or   | p |= 2 .  

If   | p |= 0 , the basic higher interpolatory cubature 

point (HICP) is     ξ0 = [0]= [0,0,,0]T , and its 

corresponding weight ( ω0 =  W0
(2,n) ) is calculated as 

  
W0

(2,n) =1− n
λ1

2 +
n(n−1)

2λ1
4 +

n(3−λ1
2 )

λ1
2λ2

2        (13) 

If   | p |=1a , the basic HICPs are calculated as: 

   
ξ i = λ1ei ,−λ1ei}{ (i =1,,n) ,  ei denotes the i-th column of 

a unit matrix. Then its corresponding weights 
(  ωi =W1

(2,n) ) can be calculated as  
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If   | p |= 2 , 
  
pi = pj =1 ( i = j ) or   pi =1  is obtained. 

When 
  
pi = pj =1 ( i = j ), the basic HICPs are calculated 

as 
  
ξ i = λ1s1,−λ1s1,λ1s2 ,−λ1s2{ } , the points sets (  s1 and   s2 ) 

are given by (15) and (16), respectively 

   
s1 {ei + ej : i < j,i, j =1,2,,n}        (15) 

   
s2 ={ei − ej : i < j,i, j =1,2,,n}       (16) 

Their corresponding weights (  ωi =W2
(2,n) ) can be 

calculated as  

  
W2

(2,n) =
1

4λ1
4          (17) 

When   pi = 2 , the basic HICPs are calculated 

as
   
ξ i = λ2ei ,−λ2ei}{ (i =1,,n) , and their corresponding 

weights (  ωi =W3
(2,n) ) is calculated as: 

  
W3

(2,n) =
3−λ1

2

2λ2
2(λ2

2 −λ1
2 )

       (18) 

Here, the two parameters ( λ1, λ2 ) are set as two 
ways, one is  λ1 =1,356  and  λ2 = 2,857 , the other is 

 λ1 = 2,857  and  λ2 =1,356  the two parameters selected 
is reasonable because the proposed the HICR with this 
choice of free parameters can achieve higher filtering 
accuracy [8]. 

According to the description above and the full 
symmetric property formulated in Eq.(10), the HICR 
can be formulated as： 

  

Integral(g) ≈ ωig(ξ i )
i=1

N

∑ =W0
(2,n)g[0]+W1
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where   W0
(2,n) ,   W1

(2,n) ,   W2
(2,n) and   W3

(2,n) are given in 
Eq.(13)-(14), Eq.(17) and Eq.(18). Here, 
N(  N = 2n2 +2n+1) is the total number of points and 
.The product of a nonlinear function   g(η)  and a 
Gaussian probability density function (PDF)   N (η;η̂, P)  

with mean   x̂  and covariance  P [45] can be expressed 
as: 

   
IntegralN (g) = g(η)N (η;η̂, P)dx∫       (20) 

Using Eq.(19) and (20) can be approximated as [8]: 

  
Integral[g] ≈ ωig(Sξ i +η̂)

i=1

N

∑        (21) 

where P = SST .  S  is a square root of the covariance 
 P and it can be obtained by the Cholesky 
decomposition. 

Above all, we can apply the HICR to approximately 
calculate the integrals. Then the FHICKF can be 
established for the fractional-order discrete nonlinear 
systems described in Eq.(3)-(5). The FHICKF algorithm 
is described as follows. 

Algorithm 1: FHICKF algorithm  

Sept 1. The initial state ( η0 ) and covariance (  P0 ). 

Repeat Step 2-3 for    k =1,2,, Mt ( Mt is the number of 
measurements). 

Step 2. Assuming   η̂k−1 and  Pk−1 are predicted state 
and covariance at k-1 time instant, respectively, and 

  Pk−1 = Sk−1Sk−1
T . 

2.1. Evaluate HICPs (   i =1,2,, N ) and propagate 
them through  

  
Xi,k−1 = Sk−1ξ i +η̂k−1         (22) 

  
Xi,k

* = f ( Xi,k−1)          (23) 

2.2. The predicted state  ηk  

Firstly, we evaluate  Δ
ϒηk  using the Eq.(21). 

  
Δϒηk ≈ ωi X i,k

*

i=1

N
∑         (24) 

Then the state prediction  ηk  of  ηk  is obtained by 

  
ηk = Δ

ϒηk − (−1) jϒ jη̂k− ji=1

k
∑        (25) 

2.3. The prediction covariance kP  

We evaluate  Pk
ΔΔ ,  Pk

ηΔ and  Pk
Δη  using the Eq.(21) 

and obtain their approximate values: 
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Pk
ΔΔ ≈ ωi ( Xi,k

* −Δϒηk )( Xi,k
* −Δϒηk )T⎡

⎣
⎤
⎦i=1

N
∑ +Qk−1      (26) 

  
Pk
ηΔ ≈ ωi ( Xi,k−1 −η̂k−1)( Xi,k

* −Δϒηk )T⎡
⎣

⎤
⎦i=1

N
∑       (27) 

  
Pk
Δη ≈ ωi ( Xi,k

* −Δϒηk )( X j ,k−1 −η̂k−1)T⎡
⎣

⎤
⎦i=1

N
∑       (28) 

The prediction covariance ( Pk ) calculated as 

  
Pk = Pk

ΔΔ + ϒ1Pk
ηΔ + Pk

Δηϒ1+ ϒ j Pk− jϒ jj=2

k
∑       (29) 

Step 3. Factorize the predicted covariance 

 Pk = SkSk
T   

3.1 Calculate HICPs and propagate them through 
measurement equation 

  
ϒ i,k = Skξ i +ηk          (30) 

  
ϒ i,k

* = h(ϒ i,k )          (31) 

3.2. Evaluate the predicted measurement, cross-
covariance and innovation covariance as the following: 

  
ϑ k = ωiϒ i,k

*

i=1

N
∑          (32) 

  
Pηϑ ,k = ωi X i,kϒ i,k

*T −
i=1

N
∑ ηkϑ k

T        (33) 

  
Pϑϑ ,k = ωiϒ i,k

* ϒ i,k
*T −ϑ kϑ k

T

i=1

N
∑ + Nk        (34) 

3.3. Evaluate the Kalman gain, estate estimation 
and corresponding covariance using Eq. (35)-(37). 

  
Kk = Pηϑ ,k Pϑϑ ,k

−1          (35) 

  η̂k =ηk + Kk (ϑ k −ϑ k )         (36) 

  
Pk = Pk − Kk Pϑϑ ,k Kk

T         (37) 

Here  ϑ k ,
  
Pϑϑ ,k ,

  
Pηϑ ,k and  Kk are the predicted 

measurement, the covariance matrix of the innovation, 
cross covariance and Kalman gain,   η̂k  and  Pk  are 
state estimation and corresponding covariance. 

4. ADAPTIVE FRACTIONAL HIGHER 
INTERPOLATORY KALMAN FILTER 

In practice, the covariances of the process and 
measurement noise are usually unknown. In this 
section, we propose the AFHICKF to deal with 
unknown covariances of process and measurement 

noise online using the covariance matching strategy, 
which tunes the covariance matrix of the innovation or 
residual based on their theoretical values. Furthermore, 
the numerical complexity of AFHICKF is analyzed.  

4.1. Process of Adaptive Noise Covariances 

The innovation error is the difference between the 
actual measurement and its predicted value, and the 
residual error is the difference between the actual 
measurement and its estimated value. The innovation 
error ( εk ) and residual error ( dk ) can be calculated, 
respectively: 

 εk =ϑ k −ϑ k          (38) 

  dk =ϑ k −ϑ̂ k          (39) 

Based on the above definitions, the process noise 
covariance estimation (  Q̂k−1

) and measurement noise 

covariance estimation (  N̂k ) can be estimated as the 
following. 

4.1.1. Residual Based Adaptive Estimation of   N̂k  

Reformulate the innovation covariance in the 
Eq.(34): 

  
Pϑϑ ,k = Ps,k + Nk          (40) 

Here 
  
Ps,k = ωiϒ i,k

* ϒ i,k
*T −ϑ kϑ k

T

i=1

N
∑ . 

The innovation based approach estimates the 
measurement noise covariance matrix Rk using Eq.(40)
1: 

  
Rk = Pϑϑ ,k − Ps,k          (41) 

Note that theoretically speaking,  Nk should be 
positive definite because it is a covariance matrix. Yet, 
its estimation in Eq.(41) could not guarantee that the 
estimated Nk be a positive definite matrix because 

the Nk is estimated by subtracting the two positive 
definite matrixes. Therefore, to ensure a positive 
definite matrix, the residual based adaptive approach 
proposed by [46] is used to estimate  Nk . Meanwhile, 
we refine the adaptive process using HICR. 

Factorize the covariance  Pk = SkSk
T , compute the 

estimated measurement   ϑ̂ k , the estimated 
interpolatory cubature points and the propagated 
interpolatory cubature points as:  
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ϒ̂ i,k = Skξ i +η̂k          (42) 

  
ϒ̂ i,k

* = h(ϒ̂ i,k )          (43) 

  
ϑ̂ k = ωiϒ̂ i,k

*

i=1

N
∑          (44) 

  
P̂s,k = ωiϒ̂ i,k

* ϒ̂ i,k
*T − ŷk ŷk

T

i=1

N
∑        (45) 

The residual covariance can be evaluated as 
follows [17]: 

  
E[dkdk

T ]= Nk − P̂s,k         (46) 

We obtain the following predicted  Nk : 

  
Rk = E[dkdk

T ]+ P̂s,k         (47) 

To implement Eq.(47), the expectation operation on 

  E[dkdk
T ]  is approximated by averaging  E[dkdk

T ] over 
time. Instead of the using the moving window, we 
introduces a forgetting factor  0 <α ≤1  in Eq.(48) to 
adaptively estimate   N̂k . 

  N̂k =α N̂k−1+ (1−α)Nk         (48) 

Note that a larger α puts more weights on previous 
estimates and therefore incurs less fluctuation of   R̂k , 
and longer time delays to catch up with changes.  

4.1.2. Innovation Based Adaptive Estimation of  Qk   

To adaptively estimate the   Qk−1 , we can calculate 
the process noise based on Eq.(3): 

  
wk−1 =ηk − f (ηk−1)+ (−1) j

j=1

k
∑ ϒ jηk− j       (49) 

Then we obtain: 

  
ŵk−1 = η̂k − f (η̂k−1)+ (−1) j

j=1

k
∑ ϒ jη̂k− j = η̂k −ηx = Kkεk      (50) 

Therefore, 

  Qk−1 = E[ŵk−1ŵk−1
T ]= E[Kkεkεk

T Kk
T ]= Kk E[εkεk

T ]Kk
T      (51) 

To implement Eq.(51), the expectation operation on 

  E[εkεk
T ]  is approximated by averaging  E[εkεk

T ] over 
time. Similar to the previous subsection 4.1.1, we use a 
forgetting factor α  to average estimates of  Qk  over 

time, and evaluated the   Q̂k  as: 

  Q̂k =αQ̂k−1+ (1−α)Qk−1         (52) 

Given the initial condition ( η̂0 ,  P0 ), the state 
estimation process can be recursively implemented. 
We summarize the AFHICKF in Algorithm 1. 

Algorithm 1. AFHICKF algorithm 

Given the state estimate  η̂0  and its associated error 

covariance   P0  at time   k = 0 , compute the state 
estimate at every time  k , starting with the 
approximation   η̂k−1 ,   Pk−1 of mean and covariance of   ηk−1  

given    Z1:k−1 . 

Step 1: Initialize parameters:  η̂0 ,  P0 ,  Q̂0   R̂0   

For    k =1,2,, Mt  

Step 2. Time update 

Calculate the state prediction  ηk  and covariance Pk  
using Eq.(25) and Eq. (29). 

Step 3. Measurement update 

Step 3.1 Calculate the predicted measurement, the 
cross-covariance and innovation covariance using 
Eq.(32)-(34). 

Step 3.2 Calculate the state estimate   η̂k  and 

covariance Pk  using Eq.(36)-(37). 

Step 4. adaptive process for the process and 
measurement noise covariance. 

  dk =ϑ k −ϑ̂ k  

 εk =ϑ k −ϑ k  

  Q̂k =αQ̂k−1+ (1−α)(Kkεkεk
T Kk

T )  

  
R̂k =α R̂k−1+ (1−α)(dkdk

T + P̂s,k )  

End For 

4.2. Computational Complexity 

Now we use floating-point operations (flops) to 
analyze the numerical complexity of AFHICKF. The 
basic arithmetic operations such as matrix addition, 
matrix subtraction, matrix multiplication, inverse of 
matrix, or square root can be referred to reference [36]. 
The specific flops of each step are shown in Table 1. 
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Here, L is memory length (in Eq. (4),  ηk  is related to 
all of the previous state and has the long memory 
property) when FHICKF is implemented.   F(n)  and 

  
H (n,my ) are assumed to be the required flops of two 

nonlinear functions   f (ηk -1)  and   h(ηk ) , respectively. 
Their exact computational complexity is hard to 
evaluate but significant. The total complexity of 
AFHICKF is obtained by: 

  

TAFHICKF =12nη
4 + (6my + 25)nη

3 + (20+ 2F(nη )+

L+ 4H (nη ,my )+12my
2 +8my )nη

2

+(2F(nη )+ 2L+5+H (nη ,my )+3my + 20m2 )nη +

F(nη )+ 2H (nη ,my )+my
3 +14my

2 − 2my

     (53) 

The numerical complexity of the AFHICKF is 

  
max{O(nη

4 ),O(my
2 ),O(nη

2F(nη )),O(nη
2H (my ,nη ))} . 

Based on the below simulation analysis, the 
proposed AFHICKF exhibits a slightly increase in 
computational complexity relative to FIHCKF, FCKF, 
FICKF and FUKF, but it has the more estimation 
accuracy and robustness. 

5. CASE STUDIES: RBT TRACKING IN THE 3-D CS 

Now we apply the FHICKF and AFHICKF to the 
RBT tracking in the 3-D CS [47]. Firstly, we analyze the 
influence of fractional order on FHICKF. Then we have 
compared the performance of AFHICKF with that of 
FHICKF, moreover, we also have compared the 
performance of the AFHICKF with FUKF [28], FCKF 

[25] and FICKF [37]. Lastly, we analyze the influence of 
initial process and measurement noise covariance on 
the performance of AFHICKF. The platform used in the 
simulations is a desktop computer with Intel(R) Core 
(TM) i7-2620M CPU, 2.70 GHz, 6.0 GB RAM, Windows 
10 professional (64 bit). 

5.1. State Equation of RBT in the 3-D CS 

In this paper, we consider the state estimation 
problem of RBT from a radar. The radar is located at 
the surface of the Earth (at the OS point), the relative 
locations of the RBT (at the P point) and radar are 
depicted in Figure 1. We show two orthogonal 
coordinate systems, one is the Earth-centered inertial 
coordinate system (ECI-CS,  OxI yI zI ), which is a right-
handed system with the origin O at the Earth center, 
axis  OxI  pointing in the vernal equinox direction, axis 

 OzI pointing in the direction of the North Pole N, and its 

fundamental plane  OxI yI  coincides with the Earth’s 
equatorial plane. The other is orthogonal coordinate 
reference system named East-North-Up coordinates 
system (ENU-CS,  Osxyz ), which has its origin at the 
location of the radar,  z is directed along the local 
vertical and  x  and  y lie in a local horizontal plane, with 
 x pointing east and  y pointing north. 

We have derived the kinematics of RBT with 
unknown ballistic coefficient under the two hypotheses, 
which are that the Earth is spherical and non-rotating 
and that the forces acting on the target are gravity, and 
drag [47]. We model the kinematics of the RBT in the 

Table 1: Computational Complexity of each Step 

Step Flops 

 ηk  

  
2nη

4 +81
3

nη
3 + (7+ 2F(nη ))nη

2 + (2F(nη )+ 2L+ 2)nη + F(nη )  

 Pk  
  
6nη

4 +6nη
3 + (L+ 4)nη

2  

 ϑ k  

  
2nη

4 +6 1
3

nη
3 + (2my + 2H (nη ,my )+5)nη

2 + (2m+ 2+ 2H (nη ,my ))nη +H (nη ,my )  

  
Pηϑ ,k  

  
(6my − 2)nη

3 + (6my − 2)nη
2 + (5my − 2)nη  

  
Pϑϑ ,k  

  
(6my

2 − 2m)nη
2 + (6my

2 − 2my )nη +6my
2 − 2my  

 Kk  
  
(2my

2 −my )nη +my
3  

  η̂k  
  
(2my +1)nη  

 Pk  
  
2mynη

2 + (2my
2 −my )nη  

  Q̂k  
  
nη

2 + (4my
2 − 2my )nη +my  

  R̂k  
  
2n4 +6 1

3
nη

3 +5nη
2 + (6my

2 + 2H (nη ,my ))n2 + (2H (nη ,my )+ 2+6my
2 )nη +H (nη ,m)+8my

2 −my  
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ENU-CS by the following fractional discrete-time 
stochastic nonlinear dynamic state equation: 

  
ηk =Φηk−1+Gψ(ηk−1)− (−1) j

j=1

k
∑ ϒ jηk− j +wk−1      (54) 

Here,    ηk = [xk  xk  yk  yk  zk  zk  βk ]T is RBT’s state, 

 βk (  kg m2 ) is the ballistic coefficient, 

and
  
Φ= Diag[φ ,φ ,φ ,1],φ = 1 T

0 1

⎡

⎣
⎢

⎤

⎦
⎥ ,

  
G = [diag[τ ,τ ,τ ],0],τ = T 2 2

T

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, and   ψ(xk−1) is 

described as: 

   

ψ(xk−1) =

−
ρ(hk−1)
2βk−1

Vk−1  xk−1  −
µxk−1

rk−1
3

−
ρ(hk−1)
2βk−1

Vk−1  yk−1 −
µ yk−1

rk−1
3

−
ρ(hk−1)
2βk−1

Vk−1  zk−1 −
µ(zk−1+ Re )

rk−1
3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (55) 

here,  rk−1 = xk−1
2 + yk−1

2 + (zk−1+ Re )2 ,   Vk−1 = xk−1
2 + yk−1

2 + zk−1
2  

and   hk−1 = rk−1 − Re .  T (in s) is the time interval between 

the radar measurements, µ (  = 3.986005×1014 m3 / s2 ) 
and Re (  = 6371004m ) are Earth's gravitational constant 
and Earth radius, respectively.   ρ(h) (kg/m3) is the air 
density. Below 90km at height, it can be approximately 
modeled as an exponentially decaying function of 
height, i.e.  ρ = c1e

−c2h (  c1,c2  are constant 

(dimensionless),   c1 =1.227 ,  c2 =1.093×10−4 for 

  h < 9144m , and   c1 =1.754 ,  c2 =1.49×10−4  for   h ≥ 9144m ) 

[48]. Process noise is modeled as    wk  N (0,Qk ) . We 
use the fractional nonlinear discrete-time stochastic 

systems for describing RBT’s state equation in the 
Eq.(7) to compensate for the loss of the useful state 
information due to the hypothesis and obtain more 
accurate modeling. 

The measurements including the range Rk , 

elevation  Ek and azimuth Ak  are collected by the radar. 
The measurement equation in the ENU-CS is 
described by 

  ϑ k = h(ηk )+ vk          (56) 

where 

  
ϑ k = [ Rk Ek Ak ]T ,

  
h(xk ) = [ xk

2 + yk
2 + zk

2 arctan zk xk
2 + yk

2 arctan yk xk
]T

, so 

  Rk = xk
2 + yk

2 + zk
2 + vR         (57) 

  Ek = arctan zk xk
2 + yk

2 + vE        (58) 

  Ak = arctan yk xk + vA         (59) 

Measurement process
  
vk = [ vR vE vA ]T is 

modeled as the zero-mean white Gaussian noise with 
unknown covariance matrix  Nk ,  σ R , σ E  and  σ A  are 
the error standard deviations of range, elevation and 
azimuth. It is independent of the process noise  wk  and 

initial state   x0 . 

In the paper, we use the two-performance metrics 
namely, root mean-square error (RMSE) and average 
accumulated mean-square root error (AMSRE)), to 
evaluate the performance of the proposed filters. The 
definition of RMSE and AMSRE in position, velocity 
and ballistic coefficient at  k  time instant can be 
referred as in [47]. The results in the following 
simulations were obtained by RMSE and AMSRE 
averaged over 100 independent Monte Carlo runs. 

5.2. Simulations and Analysis 

5.2.1. Comparison of AFHICKF with FHICKF 

In this subsection, we compare the performance of 
AFHICKF with that of FHICKF when they are applied to 
the state estimation of RBT tracking with unknown 
noise covariances. Here, the parameters   x̂0 ,  P0 are the 
same as those in [42], the fractional order (α) is set as 
10-6, which has been shown that the FHICKF has 
better performance when the fractional order is set as α 
=10-6. The initial estimated covariances are selected as 

 
Figure 1: Geometry of radar and RBT. 
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  Q̂k = 5*Qk  and   R̂k =100*Rk , the covariances of true 

process and measurement noise ( Qk and  Rk ) are the 
same as those in [42]. Figures 2-5 shows the RMSEs 
of FHICKF and AFHICKF in position, velocity, and the 
ballistic coefficient.  

 
Figure 2: Position RMSE of FHICKF and AFHICKF. 
 

 
Figure 3: Velocity RMSE of FHICKF and AFHICKF. 
 

 
Figure 4: Ballistic coefficient RMSE of FHICKF and 
AFHICKF. 

Obviously, in terms of effectiveness, Figures 2-4 
shows the higher accuracy of AFHICKF, compared with 

that of FHICKF when the initial noise covariances are 
far from the real values. 

Moreover, we compute the AMSREp (AMSRE in 
position), AMSREv (AMSRE in velocity) and AMSREb 
(AMSRE in ballistic coefficient) for FHICKF and 
AFHICKF, respectively, as shown in Figure 5. From 
Figure 5, the simulation results have demonstrated the 
prominent improvement over AFHICKF because the 
AFHICKF incorporates the adaptive procedures of 
estimating the process and measurement noise 
covariance. The simulations demonstrate that the 
AFHICKF is an effective method to solve state 
estimation problem of RBT tracking with unknown 
noise covariances.  

 
Figure 5: AMSRE of FHICKF and AFHICKF. 

5.2.2. Comparison of AFHICKF with FUKF, FCKF 
and FICKF 

In this subsection, we compare the performance of 
AFHICKF with that of FUKF, FCKF and FICKF when 
they are applied to the state estimation of RBT tracking 
with unknown noise covariances. Here, the parameters 

  x̂0 ,  P0 , α are the same as those in subsection 5.2.1, 

and the covariances ( Qk , Rk ) and estimated 

 
Figure 6: Position RMSE of various filters. 
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covariances (  Q̂k ,  R̂k ) of true process and measurement 
noise are the same as those in subsection 5.2.1. 

From Figures 6-8, we can see RMSEs of AFHICKF 
are the smallest, compared with FUKF, FCKF and 
FICKF. Apparently, the simulations demonstrate the 
effectiveness and better performance of AFHICKF. 
Besides, as shown in Figures 6-8, FUKF, FCKF and 
FICKF have almost the same performance. 

 
Figure 7: Velocity RMSE of various filters. 

 

 
Figure 8: Ballistic coefficient RMSE of various filters. 

Moreover, we compute the AMSREp, AMSREv and 
AMSREb for AFHICKF and FUKF, FCKF and FICKF, 
respectively, as listed in Table 2. From Table 2, the 
simulation results have demonstrated the prominent 
improvement over AFHICKF because the AFHICKF 
incorporates the adaptive procedures of estimating the 
process and measurement noise covariance. 

Table 2:  AMSRE for Various Filters 

Various filters AMSREp AMSREv AMSREβ 

FUKF 1783.48 280.34 150.60 
FCKF 1783.46 280.34 150.63 
FICKF 1781.10 280.41 150.64 

AFHICKF 257.03 159.77 144.11 

5.2.4. Q and R’s Adaptiveness on the Performance 
of AFHICKF 

To evaluate the impact of  Qk  and  Rk  on the 

estimation accuracy, we set  Qk  and  Rk  by scaling   Q0  

and   R0  (they are the true covariances in subsection 

5.2.1). Here, the parameters   x̂0 ,  P0 , α are the same as 
those in subsection 5.2.2. As shown in Tables 3-6, the 
scaling factors are the multiples of 100. The ARMSEs 
of AFHICKF in position and velocity during entire 
tracking time are listed in Tables 3-4, and the ARMSEs 
of AFHICKF in position, velocity after 5 seconds of 
tracking time are listed in Tables 5-6. 

Table 3: ARMSE in Position during Entire Tracking Time 

AMSRE 0.01*Q0 Q0 100*Q0 

0.01*R0 99.83 99.83 99.82 

R0 194.48 194.48 194.25 

100*R0 414.71 414.70 414.16 

 
Table 4: ARMSE in Velocity during Entire Tracking Time 

AMSRE 0.01*Q0 Q0 100*Q0 

0.01*R0 104.92 104.92 104.84 

R0 143.10 143.10 142.99 

100*R0 188.34 188.33 188.23 

 
Table 5: ARMSE in Position after 5 Seconds of Tracking 

Time 

AMSRE 0.01*Q0 Q0 100*Q0 

0.01*R0 86.56 86.56 86.57 

R0 84.03 84.03 84.04 

100*R0 103.27 103.27 102.90 

 
Table 6: ARMSE in Velocity after 5 Seconds of Tracking 

Time 

AMSRE 0.01*Q0 Q0 Q0 

0.01*R0 22.16 22.16 22.18 

R0 19.78 19.78 19.77 

100*R0 23.88 23.88 23.78 

 

It can be observed in Tables 3 and 5 that the 
ARMSE in position sharply decreases after 5 seconds 
of tracking time. This observation indicates that the 
adaptive process of covariance in the AFHICKF quickly 
eliminates the influence of deviation from true value 
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error on state estimation. From Tables 4 and 6, we also 
have the same result from ARMSE in velocity. The 
performance improvement of the AFHICKF is more 
significant. 

Moreover, we show the RMSEs for AFHICKF in 
position and velocity after 5 seconds of the tracking 
process in Figures 9-10. We see RMSEs of AFHICKF 
in position and velocity are stable after 8 seconds of 
the tracking process when the initial noise and 
measurement covariance are various. Moreover, from 
simulations we also find that the RMSE of AFHICKF in 
ballistic coefficient has been relatively stable during the 
whole tracking process. Apparently, the simulations 
demonstrate the effectiveness and better performance 
of AFHICKF. 

 
Figure 9: Position RMSE of AFHICKF with various Q and R. 

 

 
Figure 10: Velocity RMSE of AFHICKF with various Q and R. 

6. CONCLUSION 

The paper addresses the issue of state estimation 
for fractional nonlinear discrete stochastic systems with 
unknown noise covariances. To tackle this challenge, 

we propose the AFHICKF algorithms which includes 
process of online noise covariance estimation to 
estimate state. We apply AFHICKF to reentry ballistic 
target tracking problems with unknown noise 
covariance. The simulations demonstrate the AFHICKF 
has an improved performance, compared with the 
state-of-the-art fractional filters. Moreover, simulations 
have also shown robustness and adaptiveness when 
the various noise covariance is set to be larger or 
smaller than the true value. However, the 
implementation of AFHICKF algorithm involves matrix 
computations, which may carry the risk of matrix 
singularity. Moving forward, we will use square-root 
method to study the stability of AFHICKF algorithms 
and state estimation problems for fractional-order 
discrete-time non-linear systems with missing 
measurement phenomenon. 
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