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Abstract: Excellent maneuverability is one of the key factors in ensuring the successful completion of missions for 
hypersonic vehicles. Therefore, to address the tracking control problem for hypersonic vehicles, a novel composite 
control method is proposed by integrating preview control with model predictive control. Based on the introduced 
nonlinear aircraft model, linearization is performed using small-perturbation theory in preparation for subsequent 
controller design. Furthermore, building upon the discretized model, a preview controller and a model predictive 
controller are designed separately, and are subsequently integrated to finalize the design of the control system. The 
designed control system achieves good tracking of both velocity and altitude while satisfying all system constraints. 
Compared with the conventional model predictive control method, the proposed one demonstrates improved dynamic 
performance while requiring less control effort. For velocity tracking, throttle setting, and elevator deflection angle, the 
maximum values of the PMPC system are approximately 77.65%, 92.45%, and 65.48% of those of the MPC system, 
respectively. This fully validates the necessity of introducing preview control as a feedforward compensation and opens 
new avenues for high-performance control of hypersonic vehicles. 
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longitudinal tracking. 

1. INTRODUCTION 

As an aircraft operating in near-space, hypersonic 
vehicles demonstrate significant value in both military 
and civilian domains, particularly in areas such as long-
range transportation, reconnaissance, and strike 
operations [1, 2]. These significant values have 
attracted considerable attention from scientists and 
engineers, sparking a global research boom in 
hypersonic vehicles. However, the unique aerodynamic 
shape, integrated engine-airframe design, and complex 
flight environment of hypersonic vehicles endow them 
with stronger nonlinearity, coupling, and uncertainty 
compared to conventional aircraft, posing 
unprecedented challenges for the design of control 
systems.  

Given the dynamic characteristics of hypersonic 
vehicles, a wide range of control methods have been 
employed in the design of their control systems, such 
as feedback linearization, adaptive control, sliding 
mode control, and fuzzy control [3, 4]. Control systems 
designed based on feedback linearization typically 
require further enhancement of their robustness. 
Adaptive or sliding mode control systems exhibit strong 
robustness due to their inherent unique mechanisms, 
thereby ensuring effective control performance. The 
intelligent control systems for hypersonic vehicles 
achieve further performance enhancement due to their 
powerful learning capability. While these methods have  
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achieved satisfactory control performance to some 
extent, none of them take the system constraints into 
account. It is known that all physical systems are 
subject to constraints. If these constraints are not 
satisfied, the actual performance of the system can be 
compromised or may even lead to system instability [5, 
6].  

Model predictive control (MPC) provides a receding-
horizon optimization framework that can explicitly 
handle multivariable dynamics and hard constraints. 
MPC predicts future outputs using a model and 
computes a control sequence by solving an online 
constrained optimization problem [7, 8]. Due to its 
ability to pursue optimality while satisfying system 
constraints, MPC has gained considerable favor in the 
control of hypersonic vehicles [6, 9, 10]. Research 
shows that MPC systems also exhibit strong 
robustness, as they employ a rolling optimization 
strategy [11, 12]. As is well known, hypersonic vehicles 
frequently perform maneuvering flight to accomplish 
missions or avoid risks. In hypersonic vehicle MPC 
systems, maneuvering commands often take the form 
of step signals. To rapidly eliminate tracking errors, 
substantial control actions are required, which may 
degrade the system's dynamic performance and 
consequently reduce flight quality.  

Preview control (PC) explicitly utilizes known future 
reference and/or disturbance information to generate 
anticipated feedforward actions, thereby reducing 
phase lag and improving system dynamic performance 
[13, 14]. Like conventional feedback control, PC 
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imposes stringent requirements on model accuracy, 
presenting a key limitation in real-world 
implementation. To exploit the complementary 
strengths of MPC and PC, a composite control strategy 
based on the integration of MPC and PC is proposed. 
The offline preview feedforward compensator utilizes 
future references and known disturbance information to 
enhance dynamic performance, while the online MPC 
system suppresses uncertainties, thereby improving 
the overall system performance.  

The rest of this study is structured as follows. 
Section 2 describes the vehicle model and the 
composite controller design is presented in Section 3. 
The results and analysis are presented in Section 4, 
and the conclusion is provided in Section 5. 

2. MATHEMATICAL MODEL OF A HYPERSONIC 
VEHICLE AND ITS LINEARIZATION 

2.1. Mathematical Model of a Hypersonic Vehicle 

Assuming constant the mass, center of mass, and 
structural configuration during flight, the longitudinal 
dynamics of the hypersonic vehicle can be expressed 
as [6] 

   
V =

T cosα −D
m

− g sinγ           (1) 

   
γ =

T sinα + L
mV

−
g cosγ

V
          (2) 

   
h =V sinγ            (3) 

  α = q− γ            (4) 

  
q = Mz

Izz

            (5) 

where  V  denotes the velocity,  h  denotes the altitude, 
γ  denotes the flight path angle, α  denotes the angle of 
attack,  q  denotes the pitch rate.  m ,  g ,  T ,  D ,  Mz , 

 Izz  denote the vehicle mass, gravitational acceleration, 
thrust, drag, pitching moment, and pitch moment of 

inertia, respectively. The expressions for the lift  L , 
drag D , thrust  T , and pitching moment  Mz  are given 
by 

  
L = 1

2
ρV 2SCL            (6) 

  
D =

1
2
ρV 2SCD            (7) 

  
T =

1
2
ρV 2SCT            (8) 

  
Mz =

1
2
ρV 2Sc CM (α)+CM (δ)+CM (q)⎡⎣ ⎤⎦         (9) 

  

CL = 0.6203α

CD = 0.6450α 2 +0.0043378α +0.003772

CT =
0.02876η,η <1
0.0224+0.0036η,η ≥1

⎧
⎨
⎩

CM (α) = −0.035α 2 +0.036617α +5.3261×10−6

CM (δ) = ce(δ −α)

CM (q) = c
2V

q(−6.796α 2 +0.3015α −0.2289)

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

     (10) 

It should be noted that the above coefficient 
expressions are valid under a trimmed cruise condition 
[15], i.e.,   M =15 ,   V =15060ft/s ,   h =110000ft ,  γ = 0deg , 

  q = 0deg/s . Some other physical parameters of the 
vehicle are provided in Table 1. Additionally, the 
propulsion system can be described by the following 
second-order system: 

   η = −2ςωn η −ωn
2η+ωn

2ηc  (11)where η  denotes the throttle 

setting, ς  denotes the damping, and  ωn  denotes the 
frequency. 

2.2. Model Linearization 

As stated in 2.1, the vehicle dynamics are strongly 
nonlinear, which is detrimental to the control system 
design synthesis based on linear theory. Therefore, the 
model is linearized at a trim point using small-
perturbation theory [14, 15]. The state vector is defined 

Table 1: Parameter List 

Param  Value/Unit Param Value/Unit 

 c   80 / ft   Izz   7×106 / slug ⋅ ft2  

 m   9375 / slugs   S   3603/ ft2  

 ce   0.0292 / rad−1  ρ  
 0.24325×10−4  
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as 
  
x = V ,h,γ ,α,q⎡⎣ ⎤⎦

T
. Let the trim state be 

  
x0 = V0 ,h0 ,γ0 ,α0 ,q0

⎡⎣ ⎤⎦
T , and the corresponding trim 

control input is 
  
u0 = η0 ,δ0

⎡⎣ ⎤⎦
T

. Define the perturbation 

state vector as 
  
Δx = ΔV ,Δh,Δγ ,Δα,Δq⎡⎣ ⎤⎦

T
, and the 

perturbation control input as 
  
Δu = Δη,Δδ⎡⎣ ⎤⎦

T
, 

respectively. 

Linearization via a first-order Taylor series 
expansion of equations (1)-(5) about the trim point, 
while neglecting higher-order terms, gives the following 
continuous-time linear state-space model: 

  Δ x = AΔx+ BΔu          (12) 

 Δy =CΔx          (13) 

where  A , B , C  are the relevant matrices. Considering 
a trim condition   Vtrim =15060ft ⋅s−1 ,  γ trim = 0rad , 

  htrim =110000ft ,  α trim = 0.0312rad ,   qtrim = 0rad ⋅s−1 , 

 δtrim = −0.0069rad , the model is linearized as 

   Δ x = A0Δx+ B0Δu         (14) 

  Δy =C0Δx          (15) 

with 

  

A0 =

0 −3.1478×10 0 −4.7455×10 0
2.7759×10−7 0 0 4.3985×10−2 0

0 1.5060×104 0 0 0
−2.7759×10−7 0 0 −4.3985×10−2 1

0 0 0 5.9418×10−1 −6.8216×10−2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 

  

B0 =

2.7296×10 0
5.6617×10−7 0

0 0
−5.6617×10−7 0

0 3.3167

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

, 
  
C0 =

1 0 0 0 0
0 0 1 0 0

⎡

⎣
⎢

⎤

⎦
⎥ . 

Furthermore, system (14, 15) can be discretized as 

  
x k +1( ) = A*x k( )+ B*u k( )        (16) 

where   A* = eATs , 
  
B* = B eAτ dτ

0

Ts∫ ,  Ts  is the sampling 
period.  

3. PREVIEW MODEL PREDICTIVE CONTROLLER 
DESIGN 

This section develops a scheme by integrating 
preview feedforward compensation with constrained 

MPC. the proposed controller consists of an offline 
preview feedforward compensator and an online 
receding-horizon optimization module. The preview 
compensator uses available future reference and 
preview able disturbance information to generate 

  
upre (k) , while the MPC module computes a corrective 

input 
  
umpc (k)  based on feedback to satisfy hard 

constraints. The implemented control input is the 
superposition 

  
u(k) = upre (k)+umpc (k) . 

3.1. Controller Design Process 

A finite-horizon preview feedforward signal can be 
written as a linear combination of future reference and 
preview able disturbance signals: 

  
upre (k) = FR( j)

j=1

MR

∑ R(k + j)+ Fd ( j)
j=0

Md

∑ d(k + j)       (17) 

The preview gains  FR  and  Fd  can be computed 
offline (from a standard optimal preview-control 
synthesis). Therefore, once the future reference 

  R(k + j)  and disturbance   d(k + j)  are available, 
  
upre (k)  

can be generated in real time. Here, the   d(k + j)  can 
be estimated using an observer. Propagating the plant 
model with 

  
upre (k)  yields the corresponding preview-

induced output 
  
ypre (k)  as in Eq. (18). 

  
ypre(k)=Cxpre(k)         (18) 

Let 
 
H p and  Hu  denote the prediction and control 

horizons, respectively (
 
Hu ≤ H p ). In conventional MPC, 

the stacked output prediction can be written in the 
compact form    Y (k) =Ξx(k)+ΘU (k) , where Ξ  and Θ  
are built from the discrete-time state-space model. With 
the preview-induced output vector 

   
Ypre (k) , the PMPC 

prediction model is given by Eq. (19). 

   
YM (k) =Y (k)+Ypre(k) =Ξx(k)+ΘU (k)+Ypre(k)      (19) 

with 

 

    

YM (k) =

yM (k +1| k)


yM (k +H p | k)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, 

    

Y (k) =
y(k +1| k)


y(k +H p | k)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, 

    

Ypre(k) =

ypre(k | k)


ypre(k +H p −1| k)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

. 
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At each sampling instant  k , a prediction error is 
computed between the measured output   y(k)  and the 
one-step-ahead model prediction 

  
ypre (k | k −1)  obtained 

at the previous sampling instant. Assuming that the 
mismatch is approximately constant over the short 
horizon, this offset is added to the future predictions, 
leading to the correction term defined in Eq. (20). 

  
eM (k +τ | k) = yp (k)− yM (k)        (20) 

where 
  
yp (k)  denotes the measured (plant) output, and 

  yM (k)  denotes the model prediction of 
  
yp (k)  

computed at the previous step (
  
yM (k) = ypre (k | k −1) ). 

Following the receding-horizon principle, at each 
time  k  the PMPC computes an optimal control 
sequence by minimizing a quadratic objective that 
penalizes the corrected output tracking error and 
control effort, as in Eq. (21). 

   

hM (k) = yM (k +τ | k)+ eM (k +τ | k)− r(k +τ )
Q(τ )

2

τ=1

H p

∑

+ u(k +τ | k)
R(τ )

2

τ=0

Hu−1

∑
     (21) 

where  Q  and  R  are weighting matrices, and   r(k +τ )  
is the previewed reference trajectory. The same 
weights are used for both output channels (velocity and 
altitude) unless otherwise stated. By stacking the 
predicted outputs, reference signals, and correction 
terms, the objective can be rewritten in a compact form 
as (22), which is quadratic in the stacked control vector 

  u(k) . 

    
hM (k) = U (k)

R

2
+ YM (k)+ EM (k)−ϒ (k)

Q

2
      (22) 

where 
    
EM (k) = eM

T (k +1| k)  eM
T (k +H p | k)⎡

⎣⎢
⎤
⎦⎥

T

, 

    
U (k) = uT(k +1| k) ⎡

⎣⎢   
uT(k +Hu | k)⎤⎦

T
, 

   
ϒ (k) = rT(k +1| k)  rT(k +H p | k)⎡

⎣⎢
⎤
⎦⎥

T

. 

For convenience, define the variable   ϖ M (k)  in Eq. 
(23), which collects all known terms (current state, 
reference, prediction correction, and the preview-
induced output). 

   
ϖ M (k) =ϒ (k)−Ξ x(k)− EM (k)−Ypre(k)       (23) 

So, the (22) can be further simplified as 

    

hM (k) = ΘU (k)−ϖ M (k)
Q

2
+ U (k)

R

2

      =ϖ M
T (k)Qϖ M (k)−U T (k)℘M +U T (k)U (k)

     (24) 

Note that    ϖ M
T (k)Qϖ M (k)  in (24) is constant with 

respect to    U (k) . Therefore, differentiating the quadratic 
objective yields the gradient in Eq. (25). 

    
∇U (k )h = −℘M + 2U (k)         (25) 

If no constraints are imposed, setting the gradient to 
zero gives the closed-form solution in Eq. (26). In the 
constrained case considered here, the magnitude and 
rate limits of control input are enforced, and the 
optimization is solved as a convex  QP  with linear 
inequality constraints at each sampling instant, more 
details can be found in the references. 

    
U (k) = 1

2
−1℘M  (26) 

3.2. Implementation Procedure 

(1) Offline preview design: Select preview-control 
weights and preview lengths ( M R  and  Md ) 
based on the available future reference and 
disturbance information, and compute the 
preview gains  FR  and  Fd . 

(2) MPC parameter selection: Choose the sampling 
period  Ts , prediction horizon 

 
H p , control horizon 

 Hu  (
 
Hu ≤ H p ), and the MPC weighting matrices 

 Q  and  R , specify actuator magnitude and rate 
constraints. 

(3) Preview generation: At each time  k , compute 

  
upre (k)  using Eq. (17) from the available future 
reference and preview able disturbance data, 
and propagate the model to obtain 

  
ypre (k) . 

(4) Online QP optimization: Measure 
 
y k( )  or 

estimate 
 
x k( ) , compute the prediction correction 

term using Eq. (20), build the PMPC prediction 
model in Eq. (19), and solve the constrained QP 
corresponding to Eq. (22) to obtain the optimal 
corrective sequence 

  
u * k( ) . 

(5) Apply the first control move: 
  
umpc k( )  is taken as 

the first element of 
  
u * k( ) , and the applied input 

is 
  
u k( ) = upre (k)+umpc (k) . 
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(6) Repeat Steps (3)-(5) at the next sampling instant 
(receding horizon). 

Remark 1. The preview information utilized in the 
controller design includes both the reference output 
and disturbance signals. Generally, the former can be 
obtained via navigation systems, while the latter is 
typically acquired by first estimating the current value 
using an observer, followed by extrapolation 
techniques to derive estimated values for a future time 
period. Although the future estimates may contain 
errors, the rolling optimization mechanism of MPC 
effectively mitigates the impact of such inaccuracies. 

4. RESULTS AND ANALYSIS 

It is assumed that the aircraft conducts 
maneuvering flight under a cruise condition, and the 
control parameters are follows:   TS = 0.001s ,

  
H p =100 , 

  Hu = 20 . The constraints are  Δη ≤ 0.1 , 0 ≤η ≤ 3 , 

 Δδ ≤ 3o ,  −15o ≤δ ≤15o . The weighting matrices in the 
prediction stage are: 

  
Q = 0.001×diag(ones(1,2×H p )) ,

  R = 2×diag(ones(1,2×Hu )) . It should be noted that the 
selection of the above control parameters was 
determined through a trial-and-error approach. 
Alternatively, sensitivity analysis can be performed on 

these parameters, and the selection can be made 
based on the analysis results. Furthermore, building on 
sensitivity analysis, optimization methods can be 
employed to determine the selection of key 
parameters. Additionally, regarding the determination 
of constraints, previous studies have shown that such a 
configuration is reasonable [6]. 

4.1. Validation of Effectiveness 

Figures 2-5 illustrate the control performance of the 
proposed PMPC method for the hypersonic vehicle. In 
Figure 2, the dashed line denotes the desired velocity, 
while the solid line denotes the actual one. It can be 
observed from Figure 2 that the velocity first 
decreases, then gradually increases, reaching the 
reference value within 15s with no overshoot. In Figure 
3, the dashed line denotes the reference signal and the 
solid line denotes the actual altitude. Likewise, it can be 
seen from Figure 3 that the altitude settles within 10 s 
with slight overshoot. However, the overshoot is almost 
negligible. Figures 4 and 5 depict the control input 
variables, namely the throttle setting and the control-
surface deflection, respectively. As shown in Figures 4 
and 5, the throttle setting stabilizes within 15 s, and the 
control-surface deflection stabilizes in approximately 5 
s. Moreover, all these control variables remain within 

 
Figure 1: Velocity response under PMPC. 

 
Figure 2: Altitude response under PMPC. 
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the specified constraints. The above results 
demonstrate that the designed PMPC system achieves 
satisfactory tracking performance for the vehicle and 
validate the effectiveness of the proposed PMPC 
method. 

4.2. Comparative Results and Analysis 

To highlight the advantages of the proposed 
method, it is compared with conventional MPC, with the 
results shown in Figures 5-8. In Figure 5, the dashed 
line represents the velocity response under MPC, 
whereas the solid line represents the response under 

PMPC. As shown in Figure 5, Both methods achieve 
satisfactory speed tracking performance, and their 
regulation processes are largely identical. However, the 
velocity reduction under PMPC is less than that under 
MPC, which is mainly due to the compensation effect of 
preview control. Unlike the velocity tracking, the altitude 
tracking performance is nearly identical under both 
methods, as shown Figure 6, indicating that the 
feedforward compensation has a negligible effect on 
height tracking. For the throttle setting, as shown in 
Figure 7, the required control effort under PMPC is 
lower during the dynamic phase, which is beneficial for 
enhancing the regulation capability of vehicles. Similar 

 
Figure 3: Throttle setting command under PMPC. 

 

 
Figure 4: Control-surface deflection under PMPC. 

 
Figure 5: Velocity response comparison. 
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to the throttle setting, as shown in Figure 8, the 
required deflection effort under PMPC is lower during 
the dynamic phase. To more clearly demonstrate the 
advantages of the proposed control method, numerical 
comparisons are presented below. For velocity 
tracking, throttle setting, and elevator deflection angle, 
the maximum values of the PMPC system are 
approximately 77.65%, 92.45%, and 65.48% of those 
of the MPC system, respectively. 

From the above comparison, it can be concluded 
that the PMPC method combines the advantages of 
optimal preview and predictive control. It achieves 

improved tracking control of both flight velocity and 
altitude for the hypersonic vehicle, while also effectively 
reducing the control effort. 

5. CONCLUSION 

This study addresses the tracking control problem 
for hypersonic vehicles by integrating optimal preview 
control and predictive control to design a composite 
control system. The results demonstrate that the 
designed control system achieves satisfactory tracking 
performance for the hypersonic vehicle while satisfying 
the constraints on control inputs. Compared with 

 
Figure 6: Altitude response comparison. 

 

 
Figure 7: Throttle setting commands. 

 

 
Figure 8: Control-surface deflection commands. 
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conventional model predictive control, the proposed 
method delivers superior dynamic performance and 
reduces the amplitude of control inputs, highlighting its 
advantages. This proposed method significantly 
enhances the precision and foresight of flight control by 
integrating two distinct control mechanisms. For 
intelligent aviation systems, it improves adaptive and 
collaborative decision-making capabilities. In terms of 
sustainable flight, it optimizes flight trajectories and 
energy consumption, reducing fuel usage and 
emissions, thereby advancing the development of 
greener aviation. Future work will apply the proposed 
method to flexible hypersonic vehicles to further 
validate its adaptability. 
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