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Abstract: This paper addresses the critical challenges in data-driven trajectory prediction for high-speed vehicles,
focusing on issues such as training instability, computational inefficiency, and the mismatch between input and output
sequence lengths. To overcome these challenges, we propose an attention-augmented Gated Recurrent Unit (GRU)
sequence-to-sequence (Seq2Seq) framework that integrates temporal attention mechanisms to selectively emphasize
informative historical states. This enhancement enables robust long-horizon trajectory predictions based on limited
observational data. The proposed model synergizes the parameter efficiency and reduced complexity of GRUs with the
dynamic focus capabilities provided by attention mechanisms, resulting in improved prediction accuracy without
imposing significant computational burdens—thereby making the approach well-suited for real-time deployment on
resource-constrained platforms. Comparative evaluations against baseline models using Long Short-Term Memory
(LSTM) Seq2Seq and conventional GRU Seq2Seq architectures without attention demonstrate a substantial reduction in
trajectory prediction errors. Extensive simulation results confirm kilometer-level prediction accuracy, validating both the
effectiveness and practical viability of the presented method for high-speed vehicle trajectory prediction.

Keywords: Trajectory prediction, sequence-to-sequence, gated recurrent unit (GRU), attention mechanism, deep
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1. INTRODUCTION

The trajectory prediction of high-speed vehicles
occupies a pivotal position in both theoretical research
and practical applications in the fields of target
detection, early warning, interception and guidance.
Existing trajectory prediction methods can be broadly
categorized into two types: model-based and data-
driven approaches. From a methodological perspective,
model-based methods predict the target states through
mathematical modeling, including function
approximation methods [1, 2], analytical methods [3-5],
and filtering extrapolation methods [6-8]. The function
approximation method estimates the trajectory curve
through a combination of multiple functions, but its
prediction error tends to diverge over time. Analytical
methods rely heavily on prior knowledge and often
struggle to obtain analytical solutions. Filtering
extrapolation methods, while more practically viable,
remain reliant on precise modeling frameworks. Under
complex flight scenarios, constructing a unified and
accurate mathematical model becomes inherently
challenging. Against this backdrop, in engineering
applications, multi-model filtering and data-driven
methods are more commonly adopted. Although multi-
model filtering can improve maneuver recognition and
prediction accuracy, its model set design is contingent
upon empirical knowledge, requires frequent threshold
calibration, and the computational cost is high.
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Consequently, it remains challenging to meet the real-
time and robustness requirements of trajectory
prediction [9,10].

In recent years, data-driven approaches based on
deep learning have demonstrated significant
advantages in time-series prediction [11-14]. Recurrent
Neural Networks (RNN) and LSTM have provided new
perspectives for flight trajectory prediction by extracting
temporal features and identifying underlying patterns
[15-17]. More recently, flight trajectory prediction
research has increasingly adopted encoder—decoder
and attention-based architectures to enhance long-term
dependency modeling and robustness under complex
maneuvers [18-20]. Nevertheless, achieving a
favorable trade-off among prediction accuracy, training
stability, and computational efficiency for high-speed
vehicles, especially for real-time deployment on
resource-constrained platforms, still warrants further
investigation.

GRU, as a variant of RNN, are designed to mitigate
gradient vanishing and improve the modeling of long-
term dependencies during backpropagation [21]. GRU
functions similarly to LSTM but has a simpler structure
and is easier to train, offering a viable solution to the
common efficiency and training stability challenges in
deep learning-based data-driven time-series prediction
methods. Additionally, the Seq2Seq architecture
encodes the hidden states of input sequences into
semantic vectors through an encoder and then
decodes these semantic vectors into outputs matching
the desired output sequence length via a decoder
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[22,23]. This architecture effectively solves the problem
of unequal input and output sequence lengths in neural
networks, thereby better meeting practical application
requirements.

In summary, to address the prevalent issues of low
efficiency, poor training stability, and mismatched input-
output sequence lengths in deep learning-based time-
series prediction methods, this study proposes a high-
speed vehicle trajectory prediction approach that
leverages the strengths of the Seq2Seq architecture
and GRU, further enhanced by an attention mechanism
to alleviate information bottlenecks and highlight critical
historical states.

2. PRELIMINARIES AND METHODS
2.1. GRU, Seq2Seq and Attention Mechanism

(1) GRU Network

The GRU network is a variant of the Recurrent
Neural Network (RNN) that employs a gated
mechanism to control the flow and retention of
information. Compared to traditional RNNs, it better
handles long-term dependency issues, and relative to
LSTM, it has a simpler structure, fewer parameters,
and more efficient computation. The basic structure of
the GRU is illustrated in Figure 1.

Formally, given the current input vector x, and the

previous hidden state h; the GRU updates its

-1
internal state via two gating units—the update gate (s, )
and the

computations:
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Figure 1: The basic structure of GRU.
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and W are the related network weights. e indicates
element-wise multiplication.

In this structure, the update gate s, controls the
degree to which the unit state is updated, determining
how much historical information is retained, while the
reset gate 7, decides how much past information is
forgotten when generating the candidate state.
Through the dynamic regulation of these two gating
mechanisms, GRU can simultaneously model short-
term and long-term dependencies without introducing a
separate memory cell.

Compared to LSTM, GRU has fewer parameters
and a more compact structure, achieving a favorable
balance between training speed and generalization
performance. It is particularly well-suited for resource-
constrained scenarios or tasks requiring real-time
response.

(2) Sequence-to-Sequence Architecture

Seq2Seq architecture is a neural network
framework designed for sequence modeling tasks,
which addresses problems where both input and output
are sequences of variable length. The core idea is to
map the input sequence into a fixed-dimensional
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Figure 2: The basic Seq2Seq architecture.

context vector through an encoder, and then generate
the output sequence step by step from this vector using
a decoder, thereby achieving a mapping from input to
output sequences. This architecture was initially
applied to Neural Machine Translation (NMT) tasks and
was quickly extended to speech recognition, text
summarization, dialogue systems, and other domains.
The basic Seq2Seq architecture is illustrated in Figure
2,

Seq2Seq model typically consists of two RNNs or
their variants, such as LSTM networks or GRU; in this
study, GRU is selected. The encoder receives the input

sequence X ={x,x,,L ,x } and iteratively updates

the hidden states A& = f(x,,h_) , ultimately
compressing the information of the entire sequence
into the final hidden state 4, , which serves as the

context vector ¢. The decoder uses the context vector
c as its initial state and recursively generates the

output sequence Y ={y,»,,.L ,y } , where the

output at each time step depends on the previously
generated output and the current hidden state, the
computation is given by the following formula:

8, =8V, 1>5,215€) (2.2)

This end-to-end training approach effectively
addresses the issue of unequal input and output
sequence lengths in trajectory prediction.

(3) Attention Mechanism

A fixed-length context vector can easily lead to
information loss in complex dynamic scenarios. To
address this, the attention mechanism is introduced in
the deep learning literature, which allows the decoder
to dynamically focus on different parts of the historical
trajectory at each time step, thereby enhancing its
ability to capture nonlinear motion characteristics.

The attention mechanism in deep learning is
inspired by the human visual and cognitive system,
enabling neural networks to focus on relevant parts of
the input data during processing. Its key operation is to
compute the relevance weights between the encoder
outputs and the decoder state, producing an attention
distribution that assigns greater importance to input
positions that are more relevant to the current output
step. Specifically, in the context of trajectory prediction,
the encoder produces a series of hidden states:

H ={h,h,L ,h} (2.3)

where, hn represents the temporal representation of the
input trajectory at time step n . For the decoder hidden
state s, at time step i, the attention mechanism

computes its relevance with all encoder states to obtain
a weight distribution:

e, = score(s,, h,) (2.4)

_expley) 05

S exple,)

where, score(-) can take the form of a dot product, an
additive function, or a learnable multilayer perceptron
(MLP). The context vector is then obtained by

it

c = 2 ah, (2.6)
t=

This context vector ¢; dynamically aggregates the
information from the input trajectory that is most
relevant to the current prediction time step, thereby
providing the decoder with input that better captures
spatiotemporal dependencies. Finally, the decoder
generates the output:
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S; =g(yj_1asi_1aci) (2.7)

In trajectory prediction tasks, the attention
mechanism offers the following significant advantages:
1) The model can automatically identify the time steps
in the historical trajectory that are most critical for
predicting future states. For example, in the moments
immediately preceding maneuvering or turning
behaviors, the attention weights increase significantly,
enhancing the ability of the model to perceive key
dynamic changes; 2) Visualization of the attention
weight matrix ;, can reveal the degree of focus the
model places on different time steps, thereby assisting
us in understanding the basis of the model predictions
of the model and the underlying spatiotemporal
dependencies. To isolate the contributions of the
attention module and the recurrent unit selection, we
will present some comparative simulation analysis
results in Section 4.

2.2. Trajectory Prediction Framework

Based on the general concept of time-series
prediction, the proposed Seq2Seq deep learning neural
network model based on GRU and integrated with
attention mechanism is shown in Figure 3.
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Figure 3: Seq2Seq deep learning neural network based on
GRU with an attention mechanism.

In trajectory prediction tasks, the input trajectory is
typically a dynamically evolving sequence over time. To
capture temporal dependencies within a limited input
length and support online prediction, this study
employs the Sliding Window Method to segment
continuous trajectories. This method uses a fixed-
length window along the time axis to extract local
segments of the trajectory sequence, thereby
constructing multiple temporal samples for model
training and prediction.

Formally, let the complete trajectory sequence be
denoted as X ={x,x,,L ,x,} . Given a window

length T and a sliding stride s, the input for the k"

sliding ~ window is X, = {I1+(A'—1)J"X2+(A'—l)s’.“’
xh(/(_l)y} . The corresponding prediction target can be

defined as Y, = {xT+1+(k—l)s’xT+2+(k—1)x’L "xT+T+(k—1)x}’
where, T denotes the prediction horizon, k is chosen
such that 7+7+(k-1)s = N. The window slides along
the time axis with stride s, thereby generating
consecutive input—output sample pairs (Xk,};) .

Regarding sliding-window parameter settings, we
set T =60 to balance maneuver-context coverage
and computational cost for real-time deployment; pilot
experiments on a validation split indicate that shorter
windows yield insufficient motion context and larger
errors, while longer windows provide diminishing gains
with increased computation. We consider
7€{60,120} to evaluate both moderate- and long-
horizon prediction and to quantify error accumulation
as the forecast length increases.

The overall trajectory prediction framework is shown
in Figure 4. In order to reduce the difficulty of model
training, trajectories that are randomly distributed in
space are first normalized through rotation and
translation, followed by standard normalization. As
shown in the online prediction part of Figure 4, the
predicted points obtained after loading the trained
model are inverse-normalized to recover their actual
physical scale. Finally, the predicted trajectory in real
spatial coordinates is obtained through inverse rotation
and translation.

3. DATA COLLECTION AND PREPROCESSING

Deep learning is a data-driven approach. To validate
the effectiveness of the previously discussed
framework, it is first necessary to collect flight data that
reflects the characteristics of high-speed vehicles.
Obviously, obtaining a large amount of real flight test
data is difficult and costly. Here, we establish the
required data through simulation experiments. In order
to obtain high-fidelity flight data for high-speed
vehicles, we first need to establish the corresponding
kinematic and dynamic equations.

3.1. Kinematic and Dynamic Equations

For any high-speed vehicle, it is necessary to
consider elements such as Earth's gravity, Earth's
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Figure 4: The overall trajectory prediction framework.

rotation, and aerodynamics [16,23,24]. According to the
principles of flight mechanics, the kinematic equations
of the vehicle can be described as

dr

— =Vsin# 3.1
& Sin (3.1)
dA _ Vcos@siny (3.2)
dt 7 CoS @ '

dg  Vcosfcosy (33)

dr r

where, » denotes the distance from the vehicle to the
Earth’s center; A is the longitude; ¢ is the latitude; 1
represents the flight speed; @ is the flight path angle;
y is the heading angle.

If only the unpowered flight segment, i.e. the gliding
phase, is considered, the dynamics of the vehicle can
be described as

a7 —2—%sin0+wircos¢
ds mo (3.4)

(sinfcos ¢ —cosBsingsiny)
7 oou
——-|cosO+2w, cos¢

7 7

dé Zcoso
=" 4

dr m (3.5)

cosYy + a)ZEr cos¢(cosfcosg +sinfsingsiny)

]

dy _ Zsino  /’cosfsinytang .\

dz  mcos@ 7

2w, (tan 6 cos¢siny —sin @) (3.6)
2

—-—£ _sin¢@singcosy

cosf

where, m denotes the vehicle mass; @ represents the
gravitational constant; @, is the Earth’s rotational
angular velocity; o is the roll angle; L and D
correspond to the aerodynamic lift and drag,
respectively, whose expressions are given by

= % pVSC (a,Ma) (3.7)

D= % pV2SC (o, Ma) (3.8)

where, p denotes the atmospheric density; S is the
reference area of the vehicle; C, and C,, are the lift

and drag coefficients, respectively, both of which are

functions of the Mach number Ma and the angle of
attack o .

According to Eq. (3.1) to Eq. (3.6), the flight
trajectory data of a specific vehicle under specific flight
conditions can be simulated and generated. This study
focuses on the balanced longitudinal dynamics, with
Earth’s rotational and Coriolis effects intentionally
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neglected to ensure simulation tractability and enable
efficient generation of large-scale training datasets.
However, in operational scenarios where rotational
dynamics become significant—including long-duration
flights, extended downrange trajectories, high-latitude
missions, or maneuvers involving substantial heading
changes—the simplified model may produce
trajectories that diverge from high-fidelity dynamics,
potentially compromising the predictor’s
generalizability. Future work will therefore prioritize
higher-fidelity validation by incorporating Earth rotation
and Coriolis effects into the simulation framework,
followed by validation against real flight-test data as it
becomes available.

When the lift, gravity, and centrifugal force reach
equilibrium in the longitudinal plane, the rate of change
of the flight-path will be zero. From this, the control
equations for equilibrium gliding flight can be derived
as follows [16, 25]:

Vm V

Lecoso 1(V* wu
roor

+— ———z)cos0=0 (3.9)

With this equation, given a specific range of initial
flight conditions and considering the possible
deviations in the overall parameters of the vehicle, as
well as potential random disturbances, a large amount
of flight trajectory data can be generated through
Monte Carlo simulation.

3.2. Data Preprocessing

To reduce the learning difficulty of the prediction
network and improve data processing efficiency, the
preprocessing of the flight trajectory data is divided into
two steps: rotation and translation, followed by
normalization.

(1) Spatial Normalization

To address the random spatial distribution of the
original trajectories on the ground, this study applies a
spatial coordinate transformation to align the samples
to a common reference frame. This eliminates
directional randomness and provides spatially
consistent standardized inputs, thereby reducing model
complexity and improving training stability and
generalization [26]. The specific implementation steps
are as follows:

. . 0 . .
First, a reference trajectory X is selected, and its
0
center

geometric center coordinates X are determined.

Along with the geometric center coordinates X' of

center

the 7" trajectory in the total M trajectories, the
covariance matrix and its singular value decomposition
(SVD) are computed as follows

i 0 T T
Hi = Xcenter (Xcenter) = UISIV: (310)
where, U and v are orthogonal matrices, and 5 is a
diagonal matrix. Both the rotation matrix R, and the

«th

translation vector k for i trajectory are defined by

R=UV" (3.11)

L=x,.,(-R)+x,

center center

(3.12)

Finally,
obtained as

the spatially normalized trajectory is

x;. =x'R, +repmat(,, size(x',1),1) (3.13)

where,  repmat(l,size(x',1),1)  denotes  the

translation vector Zl. replicated along the number of

columns of x'.

(2) Data Normalization

Due to the high speed and long flight range,
significant numerical differences exist among different
feature dimensions. If the raw state variables are
directly input to the model, features with larger
magnitudes may dominate the training process,
diminishing the influence of other features and reducing
prediction accuracy. To improve training effectiveness
and prediction reliability, this study applies min—max
normalization to standardize the sample features. Each
trajectory in the dataset is a 6-dimensional time series,
and the trajectory set is defined as
U={'@]i€l,M]N¢,t€,TIN¢} (3.14)
where,  X'(£) =[x (1), y; (1), (1), v, (1), v, (), V. ()]
represents the three-dimensional position and velocity
components of the flight vehicle in the Earth-centered
and Earth-fixed (ECEF) coordinate system. Each
component in x'(¢) needs to be normalized [16,23].
For example,

. xi ¢ _xmjn
X, (t) = Em()—r{f (3.15)
E T E
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Table 1: Configuration of Network Hyperparameters
Hyperparameter Value/Setting
Learning Rate 5e-5
Encoder & Decoder Layers 2 recurrent layers each
Hidden Layer Dimension 128
Optimizer Adam
Loss Function Mean Absolute Error (MAE)
Batch Size 64
Training Epochs 100
Sliding Stride (s) 1
Input Sequence Length (T) 60
Output Sequence Length (1) 60 (Case 1 & 3)/ 120 (Case 2 & 4)
where, xgﬂn = minie[l,M]ﬂct minzeu,r]m ij (?) , model, differing or?ly in recurrfent cell type and the
max ; . absence of attention mechanisms. Hyperparameter
Xg o =MaX gy MAX g 10 Xz (). Finally, we get  gpecifications are summarized in Table 1.

the normalized trajectory data as follow

Y (1) =X'(1)=[T,(1), 7,

. _ _ : (3.16)
(2),Z,(2). 7 (1), 7, (7)., (7)]

4. SIMULATION RESULTS AND ANALYSIS

The above algorithm and model are implemented in
Python 3.7, and the prediction network is built with the
PyTorch framework. Both the encoder and the decoder
of the proposed deep learning neural network consist
of 2 GRU layers, and with a hidden layer dimension of
128. In the training phase, Adam optimizer is adopted,
which combines adaptive learning rates with first-
moment estimates to effectively enhance convergence
speed and generalization capability. Mean Absolute
Error (MAE) is defined as the loss function, whose
continuity, smoothness, and global differentiability
contribute to stable convergence during optimization.

To comprehensively assess the proposed trajectory
prediction algorithm, simulation experiments were
conducted across four distinct scenarios. For
comparative evaluation, two attention-free Seq2Seq
baselines with identical encoder—decoder architectures
were employed: an LSTM-Seg2Seq model and a
conventional GRU-Seq2Seq model. All models
underwent training and evaluation under strictly
identical experimental conditions, including input—
output configurations, data normalization protocols,
training/validation splits, and optimization parameters.
Unless otherwise specified, the baseline models
followed the same training procedure as the proposed

4.1. Case 1

In this case, both the input sequence length and the
output sequence length are 60. Totally 122,590
samples are stochastically generated, and the dataset
is split into training, validation, and test set in 8:1:1
ratio. Three separate models are trained, with each
model outputting a single dimension corresponding to

the position states x,,y,, and z,. The models are
separately trained for 100 epochs with a batch size of
64. The training and validation loss curves of x, -

model are depicted in Figure 5. It can be seen that the
convergence rate is quite fast, and the performance on
the training set and the validation set is almost
identical.

Training and Validation Loss Over Epochs

Epock

Figure 5: Loss curves of the X, -mode (Case 1).

For a randomly selected sample from the test set,
the prediction results are shown in Figure 6. It can be
seen that the predicted values and the actual values
are almost consistent at a macro level. The
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performance in the other two coordinate directions is
comparable, but due to space limitations, it will not be
presented here.

0 2 o @ 0 100 120

time /s

Figure 6: Comparison of predicted x-axis results for a
random sample (Case 1).

Table 2 presents the Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) for Case 1,

Table 2: Prediction Errors on the Test Sets for Case 1

4.2. Case 2

Compared with Case 1, the input sequence length
in this case remains 60, while the output sequence
length has been extended to 120. In other words, with
the same input, a longer trajectory is forecasted. Totally
116,590 samples are similarly generated. The training
and validation loss curves of x,.- model are shown in
Figure 7. A comparison of the results from a random
test sample is presented in Figure 8. Clearly,
performance declines as the prediction duration
extends.

The prediction errors for this case are given in Table
3, further validating that the proposed method
outperforms baseline models. As anticipated, extending
the prediction horizon from 60 to 120 time-steps
increases errors; however, kilometer-level positional
accuracy is consistently maintained.

4.3. Case 3

Unlike Case 1 and Case 2, in this case, a single
unified network is trained to predict trajectories

Model x-MAE/m y-MAE/m x-RMSE/m y-RMSE/m
LSTM-Seq2Seq 2520.75 935.28 3347.56 1577.82
GRU-Seq2Seq 2620.18 972.45 3479.60 1640.62
GRU-Seq2Seq + Attn. (Ours) 2286.48 849.54 3037.66 1433.52

including comparative results from the two attention-
free Seq2Seq baselines. These findings demonstrate
that the integration of the attention mechanism
enhances prediction accuracy.

Training and Validation Loss Over Epochs

Figure 7: Loss curves of the X, - mode (case 2).

simultaneously in three coordinate directions. Both the
input and output sequences remain the same as in
Case 1, with a length of 60. The total number of
samples generated through Monte Carlo simulation
amounts to 122,590. Across all test set data, the
average prediction error for each point is at kilometer-
level. Moreover, simultaneously predicting

— it

00 - Predicted

Figure 8: Comparison of predicted x-axis results for a
random sample (Case 2).



A Flight Trajectory Prediction Method Based

Journal of Intelligent Aeronautical Systems and Sustainable Flight Technologies, 2025, 1, 9

Table 3: Prediction Errors on the Test Sets for Case 2

Model x-MAE (m) y-MAE (m) x-RMSE (m) y-RMSE (m)
LSTM-Seq2Seq 3950.62 2130.49 5931.83 3481.22
GRU-Seq2Seq 4150.24 2345.67 6231.66 3832.82
GRU-Seq2Seq + Attn. (Ours) 3633.97 1922.51 5458.91 3140.80

Training and Validation Loss Over Epochs

0 20 40 60 80 100
Epoch

Figure 9: Loss curve of the prediction model (Case 3).

Table 4: Prediction Errors on the Test Sets for Case 3

yhm™ <
xkm

Figure 10: 3D trajectory prediction results (Case 3).

X, (t),y;(t), and z.(¢) yields better results than

predicting them separately (Case 1), with smaller
overall prediction errors. The training and validation
loss curves are given in Figure 9, and a random test of
three-dimensional trajectory prediction is shown in
Figure 10.

The experimental data of the test set show that the
flight trajectories in the three coordinate directions are
correlated. At the same time, joint (collaborative)
forecasting achieves much higher accuracy than
forecasting each coordinate separately (Table 4). This
table further demonstrates that the proposed method is
superior to the classic LSTM-Seq2Seq and GRU-
Seq2Seq models.

Model x-MAE /m y-MAE /m z-MAE /m Average-MAE /m
LSTM-Seq2Seq 1248.90 805.59 0.39e-2 1027.25
GRU-Seq2Seq 1298.85 838.20 0.41e-2 1068.53

GRU-Seq2Seq + Attn. (Ours) 1135.36 732.35 0.35e-2 933.86
4.4, Case 4

This case serves as an extension of Case 3,
involving the prediction of trajectory data with an output
sequence length of 120, based on input data with a
sequence length of 60. The same as Case 2, the total
number of samples is 116,590. A comparison of
prediction errors between Case 3 and Case 4 is shown
in Table 5.

The results indicate that, in this long-term trajectory
prediction case, the prediction errors are relatively
larger. This may be due to the originally set training
parameters being insufficient for the demands of this
scenario. Adjusting the network structure (e.g., the

Table 5: Comparison of Prediction Errors on the Test Sets for Case 3 and Case 4

x-axis /m y-axis /m z-axis /m Average/m
MAE (Case 3) 1135.3619 732.3527 0.0035 976.6438
MAE (Case 4) 2165.3720 4312.0507 0.00071 3042.8695
RMSE (Case 3) 2915.5412 1425.5350 0.0071 2327.8198
RMSE (Case 4) 5120.3315 10325.6360 0.0035 8854.8114
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Table 6: Comparison of Model Sizes and Training Costs

Model Params (trainable) Training time (relative)
LSTM-Seq2Seq 400,259 1.15x%
GRU-Seq2Seq 300,291 0.85%
GRU-Seq2Seq + Attention (Ours) 333,315 1.00%

number of GRU layers) or training parameters (e.g.,
batch size, hidden layer dimension, or number of
epochs) could potentially address this issue. For the
baseline models, we obtained similar results. Due to
space constraints, further discussion is omitted.

Finally, Table 6 presents a comparative analysis of
model sizes and training costs between the proposed
framework and the typical baseline models, illustrating
its practical deployability through computational
efficiency metrics.

5. CONCLUSIONS

This paper presents an intelligent prediction
framework for high-speed flight trajectories. Simulation
results validate that the proposed method consistently
captures the inherent characteristics of flight
trajectories across diverse scenarios, delivering high
prediction accuracy. This performance stems from the
integration of a Seq2Seq architecture with attention-
augmented GRU neural networks, which enables
effective modeling of long-term dependencies and
mitigates error accumulation during prediction. Notably,
the method achieves these results with a compact
network design (=333k trainable parameters) and only

marginal training-cost overhead compared to the
baseline GRU-Seq2Seq architecture. These
attributes—combined with its computational

efficiency—support real-time deployment on resource-
constrained platforms such as embedded systems.
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