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Abstract: This paper addresses the critical challenges in data-driven trajectory prediction for high-speed vehicles, 
focusing on issues such as training instability, computational inefficiency, and the mismatch between input and output 
sequence lengths. To overcome these challenges, we propose an attention-augmented Gated Recurrent Unit (GRU) 
sequence-to-sequence (Seq2Seq) framework that integrates temporal attention mechanisms to selectively emphasize 
informative historical states. This enhancement enables robust long-horizon trajectory predictions based on limited 
observational data. The proposed model synergizes the parameter efficiency and reduced complexity of GRUs with the 
dynamic focus capabilities provided by attention mechanisms, resulting in improved prediction accuracy without 
imposing significant computational burdens̶thereby making the approach well-suited for real-time deployment on 
resource-constrained platforms. Comparative evaluations against baseline models using Long Short-Term Memory 
(LSTM) Seq2Seq and conventional GRU Seq2Seq architectures without attention demonstrate a substantial reduction in 
trajectory prediction errors. Extensive simulation results confirm kilometer-level prediction accuracy, validating both the 
effectiveness and practical viability of the presented method for high-speed vehicle trajectory prediction. 
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1. INTRODUCTION 

The trajectory prediction of high-speed vehicles 
occupies a pivotal position in both theoretical research 
and practical applications in the fields of target 
detection, early warning, interception and guidance. 
Existing trajectory prediction methods can be broadly 
categorized into two types: model-based and data-
driven approaches. From a methodological perspective, 
model-based methods predict the target states through 
mathematical modeling, including function 
approximation methods [1, 2], analytical methods [3-5], 
and filtering extrapolation methods [6-8]. The function 
approximation method estimates the trajectory curve 
through a combination of multiple functions, but its 
prediction error tends to diverge over time. Analytical 
methods rely heavily on prior knowledge and often 
struggle to obtain analytical solutions. Filtering 
extrapolation methods, while more practically viable, 
remain reliant on precise modeling frameworks. Under 
complex flight scenarios, constructing a unified and 
accurate mathematical model becomes inherently 
challenging. Against this backdrop, in engineering 
applications, multi-model filtering and data-driven 
methods are more commonly adopted. Although multi-
model filtering can improve maneuver recognition and 
prediction accuracy, its model set design is contingent 
upon empirical knowledge, requires frequent threshold 
calibration, and the computational cost is high.  
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Consequently, it remains challenging to meet the real-
time and robustness requirements of trajectory 
prediction [9,10]. 

In recent years, data-driven approaches based on 
deep learning have demonstrated significant 
advantages in time-series prediction [11-14]. Recurrent 
Neural Networks (RNN) and LSTM have provided new 
perspectives for flight trajectory prediction by extracting 
temporal features and identifying underlying patterns 
[15-17]. More recently, flight trajectory prediction 
research has increasingly adopted encoder–decoder 
and attention-based architectures to enhance long-term 
dependency modeling and robustness under complex 
maneuvers [18-20]. Nevertheless, achieving a 
favorable trade-off among prediction accuracy, training 
stability, and computational efficiency for high-speed 
vehicles, especially for real-time deployment on 
resource-constrained platforms, still warrants further 
investigation.  

GRU, as a variant of RNN, are designed to mitigate 
gradient vanishing and improve the modeling of long-
term dependencies during backpropagation [21]. GRU 
functions similarly to LSTM but has a simpler structure 
and is easier to train, offering a viable solution to the 
common efficiency and training stability challenges in 
deep learning-based data-driven time-series prediction 
methods. Additionally, the Seq2Seq architecture 
encodes the hidden states of input sequences into 
semantic vectors through an encoder and then 
decodes these semantic vectors into outputs matching 
the desired output sequence length via a decoder 
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[22,23]. This architecture effectively solves the problem 
of unequal input and output sequence lengths in neural 
networks, thereby better meeting practical application 
requirements.  

In summary, to address the prevalent issues of low 
efficiency, poor training stability, and mismatched input-
output sequence lengths in deep learning-based time-
series prediction methods, this study proposes a high-
speed vehicle trajectory prediction approach that 
leverages the strengths of the Seq2Seq architecture 
and GRU, further enhanced by an attention mechanism 
to alleviate information bottlenecks and highlight critical 
historical states. 

2. PRELIMINARIES AND METHODS 

2.1. GRU, Seq2Seq and Attention Mechanism 

(1) GRU Network 

The GRU network is a variant of the Recurrent 
Neural Network (RNN) that employs a gated 
mechanism to control the flow and retention of 
information. Compared to traditional RNNs, it better 
handles long-term dependency issues, and relative to 
LSTM, it has a simpler structure, fewer parameters, 
and more efficient computation. The basic structure of 
the GRU is illustrated in Figure 1. 

Formally, given the current input vector tx  and the 

previous hidden state 1th − , the GRU updates its 

internal state via two gating units—the update gate ( ts ) 

and the reset gate ( tr )—with the following 
computations: 
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where, ( )σ ⋅  denotes the Sigmoid activation function 

and t̂h  represents the candidate hidden state. ,s rW W
and W  are the related network weights. e indicates 
element-wise multiplication. 

In this structure, the update gate ts  controls the 
degree to which the unit state is updated, determining 
how much historical information is retained, while the 
reset gate tr  decides how much past information is 
forgotten when generating the candidate state. 
Through the dynamic regulation of these two gating 
mechanisms, GRU can simultaneously model short-
term and long-term dependencies without introducing a 
separate memory cell. 

Compared to LSTM, GRU has fewer parameters 
and a more compact structure, achieving a favorable 
balance between training speed and generalization 
performance. It is particularly well-suited for resource-
constrained scenarios or tasks requiring real-time 
response. 

(2) Sequence-to-Sequence Architecture 

Seq2Seq architecture is a neural network 
framework designed for sequence modeling tasks, 
which addresses problems where both input and output 
are sequences of variable length. The core idea is to 
map the input sequence into a fixed-dimensional 

 
Figure 1: The basic structure of GRU. 
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context vector through an encoder, and then generate 
the output sequence step by step from this vector using 
a decoder, thereby achieving a mapping from input to 
output sequences. This architecture was initially 
applied to Neural Machine Translation (NMT) tasks and 
was quickly extended to speech recognition, text 
summarization, dialogue systems, and other domains. 
The basic Seq2Seq architecture is illustrated in Figure 
2. 

Seq2Seq model typically consists of two RNNs or 
their variants, such as LSTM networks or GRU; in this 
study, GRU is selected. The encoder receives the input 
sequence 1 2{ , , , }nX x x x= L  and iteratively updates 

the hidden states 1( , )t t th f x h −= , ultimately 
compressing the information of the entire sequence 
into the final hidden state nh , which serves as the 
context vector c . The decoder uses the context vector 
c  as its initial state and recursively generates the 
output sequence 1 2{ , , , }nY y y y= L , where the 
output at each time step depends on the previously 
generated output and the current hidden state, the 
computation is given by the following formula: 

1 1( , , )t t ts g y s c− −=        (2.2) 

This end-to-end training approach effectively 
addresses the issue of unequal input and output 
sequence lengths in trajectory prediction. 

(3) Attention Mechanism 

A fixed-length context vector can easily lead to 
information loss in complex dynamic scenarios. To 
address this, the attention mechanism is introduced in 
the deep learning literature, which allows the decoder 
to dynamically focus on different parts of the historical 
trajectory at each time step, thereby enhancing its 
ability to capture nonlinear motion characteristics. 

The attention mechanism in deep learning is 
inspired by the human visual and cognitive system, 
enabling neural networks to focus on relevant parts of 
the input data during processing. Its key operation is to 
compute the relevance weights between the encoder 
outputs and the decoder state, producing an attention 
distribution that assigns greater importance to input 
positions that are more relevant to the current output 
step. Specifically, in the context of trajectory prediction, 
the encoder produces a series of hidden states: 

1 2{ , , , }nH h h h= L        (2.3) 

where, nh represents the temporal representation of the 
input trajectory at time step n . For the decoder hidden 
state is  at time step i , the attention mechanism 
computes its relevance with all encoder states to obtain 
a weight distribution: 

, ( , )i t i te score s h=        (2.4) 
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where, ( )score ⋅  can take the form of a dot product, an 
additive function, or a learnable multilayer perceptron 
(MLP). The context vector is then obtained by 
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This context vector ic  dynamically aggregates the 
information from the input trajectory that is most 
relevant to the current prediction time step, thereby 
providing the decoder with input that better captures 
spatiotemporal dependencies. Finally, the decoder 
generates the output: 

 
Figure 2: The basic Seq2Seq architecture. 
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1 1( , , )i i i is g y s c− −=        (2.7) 

In trajectory prediction tasks, the attention 
mechanism offers the following significant advantages: 
1) The model can automatically identify the time steps 
in the historical trajectory that are most critical for 
predicting future states. For example, in the moments 
immediately preceding maneuvering or turning 
behaviors, the attention weights increase significantly, 
enhancing the ability of the model to perceive key 
dynamic changes; 2) Visualization of the attention 
weight matrix ,i tα  can reveal the degree of focus the 
model places on different time steps, thereby assisting 
us in understanding the basis of the model predictions 
of the model and the underlying spatiotemporal 
dependencies. To isolate the contributions of the 
attention module and the recurrent unit selection, we 
will present some comparative simulation analysis 
results in Section 4. 

2.2. Trajectory Prediction Framework 

Based on the general concept of time-series 
prediction, the proposed Seq2Seq deep learning neural 
network model based on GRU and integrated with 
attention mechanism is shown in Figure 3. 

 
Figure 3: Seq2Seq deep learning neural network based on 
GRU with an attention mechanism. 

In trajectory prediction tasks, the input trajectory is 
typically a dynamically evolving sequence over time. To 
capture temporal dependencies within a limited input 
length and support online prediction, this study 
employs the Sliding Window Method to segment 
continuous trajectories. This method uses a fixed-
length window along the time axis to extract local 
segments of the trajectory sequence, thereby 
constructing multiple temporal samples for model 
training and prediction.  

Formally, let the complete trajectory sequence be 
denoted as 1 2{ , , , }NX x x x= L . Given a window 

length ! and a sliding stride !, the input for the thk  

sliding window is X k ={x1+(k !1)s ,x2+(k !1)s ,!,  
xT +(k !1)s} . The corresponding prediction target can be 

defined as 1 ( 1) 2 ( 1) ( 1){ , , , }k T k s T k s T k sY x x x τ+ + − + + − + + −= L , 
where, τ denotes the prediction horizon, ! is chosen 
such that ( 1)T k s Nτ+ + − ≤ . The window slides along 
the time axis with stride !, thereby generating 
consecutive input–output sample pairs (X k ,Yk ) . 

Regarding sliding-window parameter settings, we 
set 60T =  to balance maneuver-context coverage 
and computational cost for real-time deployment; pilot 
experiments on a validation split indicate that shorter 
windows yield insufficient motion context and larger 
errors, while longer windows provide diminishing gains 
with increased computation. We consider 
{60,120}τ ∈  to evaluate both moderate- and long-

horizon prediction and to quantify error accumulation 
as the forecast length increases.  

The overall trajectory prediction framework is shown 
in Figure 4. In order to reduce the difficulty of model 
training, trajectories that are randomly distributed in 
space are first normalized through rotation and 
translation, followed by standard normalization. As 
shown in the online prediction part of Figure 4, the 
predicted points obtained after loading the trained 
model are inverse-normalized to recover their actual 
physical scale. Finally, the predicted trajectory in real 
spatial coordinates is obtained through inverse rotation 
and translation. 

3. DATA COLLECTION AND PREPROCESSING 

Deep learning is a data-driven approach. To validate 
the effectiveness of the previously discussed 
framework, it is first necessary to collect flight data that 
reflects the characteristics of high-speed vehicles. 
Obviously, obtaining a large amount of real flight test 
data is difficult and costly. Here, we establish the 
required data through simulation experiments. In order 
to obtain high-fidelity flight data for high-speed 
vehicles, we first need to establish the corresponding 
kinematic and dynamic equations. 

3.1. Kinematic and Dynamic Equations 

For any high-speed vehicle, it is necessary to 
consider elements such as Earth's gravity, Earth's 
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rotation, and aerodynamics [16,23,24]. According to the 
principles of flight mechanics, the kinematic equations 
of the vehicle can be described as 

d sin
d
r V
t

θ=         (3.1) 

d cos sin
d cos

V
t r
λ θ ψ

φ
=        (3.2) 
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d

V
t r
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=        (3.3) 

where, r  denotes the distance from the vehicle to the 
Earth’s center; λ  is the longitude; φ  is the latitude; V  
represents the flight speed; θ  is the flight path angle; 
ψ  is the heading angle. 

If only the unpowered flight segment, i.e. the gliding 
phase, is considered, the dynamics of the vehicle can 
be described as 
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where, m  denotes the vehicle mass; µ  represents the 
gravitational constant; Eω is the Earth’s rotational 
angular velocity; σ  is the roll angle; L  and D  
correspond to the aerodynamic lift and drag, 
respectively, whose expressions are given by 

L = 1
2
!V 2SCL (!,Ma )       (3.7) 

D =
1
2
!V 2SCD (!,Ma )       (3.8) 

where, ρ  denotes the atmospheric density; S  is the 

reference area of the vehicle; LC  and DC  are the lift 
and drag coefficients, respectively, both of which are 
functions of the Mach number Ma  and the angle of 
attack α . 

According to Eq. (3.1) to Eq. (3.6), the flight 
trajectory data of a specific vehicle under specific flight 
conditions can be simulated and generated. This study 
focuses on the balanced longitudinal dynamics, with 
Earth’s rotational and Coriolis effects intentionally 

 
Figure 4: The overall trajectory prediction framework. 
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neglected to ensure simulation tractability and enable 
efficient generation of large-scale training datasets. 
However, in operational scenarios where rotational 
dynamics become significant—including long-duration 
flights, extended downrange trajectories, high-latitude 
missions, or maneuvers involving substantial heading 
changes—the simplified model may produce 
trajectories that diverge from high-fidelity dynamics, 
potentially compromising the predictor’s 
generalizability. Future work will therefore prioritize 
higher-fidelity validation by incorporating Earth rotation 
and Coriolis effects into the simulation framework, 
followed by validation against real flight-test data as it 
becomes available. 

When the lift, gravity, and centrifugal force reach 
equilibrium in the longitudinal plane, the rate of change 
of the flight-path will be zero. From this, the control 
equations for equilibrium gliding flight can be derived 
as follows [16, 25]:  

2

2

cos 1 cos 0L V
Vm V r r

σ µ
θ

⎛ ⎞
+ − =⎜ ⎟

⎝ ⎠
     (3.9) 

With this equation, given a specific range of initial 
flight conditions and considering the possible 
deviations in the overall parameters of the vehicle, as 
well as potential random disturbances, a large amount 
of flight trajectory data can be generated through 
Monte Carlo simulation. 

3.2. Data Preprocessing 

To reduce the learning difficulty of the prediction 
network and improve data processing efficiency, the 
preprocessing of the flight trajectory data is divided into 
two steps: rotation and translation, followed by 
normalization. 

(1) Spatial Normalization 

To address the random spatial distribution of the 
original trajectories on the ground, this study applies a 
spatial coordinate transformation to align the samples 
to a common reference frame. This eliminates 
directional randomness and provides spatially 
consistent standardized inputs, thereby reducing model 
complexity and improving training stability and 
generalization [26]. The specific implementation steps 
are as follows: 

First, a reference trajectory 0x  is selected, and its 
geometric center coordinates 0

centerx  are determined. 

Along with the geometric center coordinates i
centerx  of 

the thi  trajectory in the total M trajectories, the 
covariance matrix and its singular value decomposition 
(SVD) are computed as follows 

0 T T( )i
i center center i i iH U SV= =x x     (3.10) 

where, iU  and iV  are orthogonal matrices, and iS  is a 

diagonal matrix. Both the rotation matrix iR  and the 

translation vector il  for thi  trajectory are defined by 

T
i i iR U V=         (3.11) 

0( )i
i center i centerl R= − +x x     (3.12) 

Finally, the spatially normalized trajectory is 
obtained as 

repmat( , ( ,1),1)i i i
tf i iR l size= +x x x    (3.13) 

where, repmat( , ( ,1),1)i
il size x  denotes the 

translation vector il  replicated along the number of 

columns of ix . 

(2) Data Normalization 

Due to the high speed and long flight range, 
significant numerical differences exist among different 
feature dimensions. If the raw state variables are 
directly input to the model, features with larger 
magnitudes may dominate the training process, 
diminishing the influence of other features and reducing 
prediction accuracy. To improve training effectiveness 
and prediction reliability, this study applies min–max 
normalization to standardize the sample features. Each 
trajectory in the dataset is a 6-dimensional time series, 
and the trajectory set is defined as 

{ ( ) | [1, ] , [1, ] }iU t i M t T= ∈ ∩ ∈ ∩x ¢ ¢   (3.14) 

where, ( ) [ ( ), ( ), ( ), ( ), ( ), ( )]i i i i i i i
E E E x y zt x t y t z t v t v t v t=x  

represents the three-dimensional position and velocity 
components of the flight vehicle in the Earth-centered 
and Earth-fixed (ECEF) coordinate system. Each 
component in ( )i tx  needs to be normalized [16,23]. 
For example, 

min

max min

( )( )
i

i E E
E

E E

x t xx t
x x

−
=

−
     (3.15) 
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where, min
[1, ] [1, ]min min ( )i

E i M t T Ex x t∈ ∩ ∈ ∩= ¢ ¢ , 
max

[1, ] [1, ]max max ( )i
E i M t T Ex x t∈ ∩ ∈ ∩= ¢ ¢ . Finally, we get 

the normalized trajectory data as follow 

y i (t ) = x i (t ) = [xE
i (t ), yE

i

(t ), zE
i (t ),vx

i (t ),v y
i (t ),vz

i (t )]
    (3.16) 

4. SIMULATION RESULTS AND ANALYSIS 

The above algorithm and model are implemented in 
Python 3.7, and the prediction network is built with the 
PyTorch framework. Both the encoder and the decoder 
of the proposed deep learning neural network consist 
of 2 GRU layers, and with a hidden layer dimension of 
128. In the training phase, Adam optimizer is adopted, 
which combines adaptive learning rates with first-
moment estimates to effectively enhance convergence 
speed and generalization capability. Mean Absolute 
Error (MAE) is defined as the loss function, whose 
continuity, smoothness, and global differentiability 
contribute to stable convergence during optimization.  

To comprehensively assess the proposed trajectory 
prediction algorithm, simulation experiments were 
conducted across four distinct scenarios. For 
comparative evaluation, two attention-free Seq2Seq 
baselines with identical encoder–decoder architectures 
were employed: an LSTM–Seq2Seq model and a 
conventional GRU–Seq2Seq model. All models 
underwent training and evaluation under strictly 
identical experimental conditions, including input–
output configurations, data normalization protocols, 
training/validation splits, and optimization parameters. 
Unless otherwise specified, the baseline models 
followed the same training procedure as the proposed 

model, differing only in recurrent cell type and the 
absence of attention mechanisms. Hyperparameter 
specifications are summarized in Table 1. 

4.1. Case 1 

In this case, both the input sequence length and the 
output sequence length are 60. Totally 122,590 
samples are stochastically generated, and the dataset 
is split into training, validation, and test set in 8:1:1 
ratio. Three separate models are trained, with each 
model outputting a single dimension corresponding to 
the position states ,E Ex y , and Ez . The models are 
separately trained for 100 epochs with a batch size of 
64. The training and validation loss curves of Ex - 
model are depicted in Figure 5. It can be seen that the 
convergence rate is quite fast, and the performance on 
the training set and the validation set is almost 
identical. 

 
Figure 5: Loss curves of the Ex -mode (Case 1). 

For a randomly selected sample from the test set, 
the prediction results are shown in Figure 6. It can be 
seen that the predicted values and the actual values 
are almost consistent at a macro level. The 

Table 1: Configuration of Network Hyperparameters 

Hyperparameter Value/Setting 

Learning Rate 5e-5 

Encoder & Decoder Layers 2 recurrent layers each 

Hidden Layer Dimension 128 

Optimizer Adam 

Loss Function Mean Absolute Error (MAE) 

Batch Size 64 

Training Epochs 100 

Sliding Stride (s) 1 

Input Sequence Length (T) 60 

Output Sequence Length (τ) 60 (Case 1 & 3) / 120 (Case 2 & 4) 
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performance in the other two coordinate directions is 
comparable, but due to space limitations, it will not be 
presented here. 

 
Figure 6: Comparison of predicted x-axis results for a 
random sample (Case 1). 

Table 2 presents the Mean Absolute Error (MAE) 
and Root Mean Square Error (RMSE) for Case 1, 

including comparative results from the two attention-
free Seq2Seq baselines. These findings demonstrate 
that the integration of the attention mechanism 
enhances prediction accuracy. 

4.2. Case 2 

Compared with Case 1, the input sequence length 
in this case remains 60, while the output sequence 
length has been extended to 120. In other words, with 
the same input, a longer trajectory is forecasted. Totally 
116,590 samples are similarly generated. The training 
and validation loss curves of Ex - model are shown in 
Figure 7. A comparison of the results from a random 
test sample is presented in Figure 8. Clearly, 
performance declines as the prediction duration 
extends. 

The prediction errors for this case are given in Table 
3, further validating that the proposed method 
outperforms baseline models. As anticipated, extending 
the prediction horizon from 60 to 120 time-steps 
increases errors; however, kilometer-level positional 
accuracy is consistently maintained. 

4.3. Case 3 

Unlike Case 1 and Case 2, in this case, a single 
unified network is trained to predict trajectories 

simultaneously in three coordinate directions. Both the 
input and output sequences remain the same as in 
Case 1, with a length of 60. The total number of 
samples generated through Monte Carlo simulation 
amounts to 122,590. Across all test set data, the 
average prediction error for each point is at kilometer-
level. Moreover, simultaneously predicting 

Table 2: Prediction Errors on the Test Sets for Case 1 

Model x-MAE/m y-MAE/m x-RMSE/m y-RMSE/m 

LSTM–Seq2Seq 2520.75 935.28 3347.56 1577.82 

GRU–Seq2Seq 2620.18 972.45 3479.60 1640.62 

GRU–Seq2Seq + Attn. (Ours) 2286.48 849.54 3037.66 1433.52 

 
Figure 7: Loss curves of the Ex - mode (case 2). 

 
Figure 8: Comparison of predicted x-axis results for a 
random sample (Case 2). 
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( ), ( )E Ex t y t , and ( )Ez t  yields better results than 
predicting them separately (Case 1), with smaller 
overall prediction errors. The training and validation 
loss curves are given in Figure 9, and a random test of 
three-dimensional trajectory prediction is shown in 
Figure 10.  

The experimental data of the test set show that the 
flight trajectories in the three coordinate directions are 
correlated. At the same time, joint (collaborative) 
forecasting achieves much higher accuracy than 
forecasting each coordinate separately (Table 4). This 
table further demonstrates that the proposed method is 
superior to the classic LSTM-Seq2Seq and GRU-
Seq2Seq models. 

4.4. Case 4 

This case serves as an extension of Case 3, 
involving the prediction of trajectory data with an output 
sequence length of 120, based on input data with a 
sequence length of 60. The same as Case 2, the total 
number of samples is 116,590. A comparison of 
prediction errors between Case 3 and Case 4 is shown 
in Table 5. 

The results indicate that, in this long-term trajectory 
prediction case, the prediction errors are relatively 
larger. This may be due to the originally set training 
parameters being insufficient for the demands of this 
scenario. Adjusting the network structure (e.g., the 

Table 3: Prediction Errors on the Test Sets for Case 2 

Model x-MAE (m) y-MAE (m) x-RMSE (m) y-RMSE (m) 

LSTM–Seq2Seq 3950.62 2130.49 5931.83 3481.22 

GRU–Seq2Seq 4150.24 2345.67 6231.66 3832.82 

GRU–Seq2Seq + Attn. (Ours) 3633.97 1922.51 5458.91 3140.80 

 

 
Figure 9: Loss curve of the prediction model (Case 3). 

 

 
Figure 10: 3D trajectory prediction results (Case 3). 

 
Table 4: Prediction Errors on the Test Sets for Case 3 

Model x-MAE /m y-MAE /m z-MAE /m Average-MAE /m 

LSTM–Seq2Seq 1248.90 805.59 0.39e-2 1027.25 

GRU–Seq2Seq 1298.85 838.20 0.41e-2 1068.53 

GRU–Seq2Seq + Attn. (Ours) 1135.36 732.35 0.35e-2 933.86 

Table 5: Comparison of Prediction Errors on the Test Sets for Case 3 and Case 4 

 x-axis /m y-axis /m z-axis /m Average/m 

MAE (Case 3) 1135.3619 732.3527 0.0035 976.6438 

MAE (Case 4) 2165.3720 4312.0507 0.00071 3042.8695 

RMSE (Case 3) 2915.5412 1425.5350 0.0071 2327.8198 

RMSE (Case 4) 5120.3315 10325.6360 0.0035 8854.8114 
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number of GRU layers) or training parameters (e.g., 
batch size, hidden layer dimension, or number of 
epochs) could potentially address this issue. For the 
baseline models, we obtained similar results. Due to 
space constraints, further discussion is omitted. 

Finally, Table 6 presents a comparative analysis of 
model sizes and training costs between the proposed 
framework and the typical baseline models, illustrating 
its practical deployability through computational 
efficiency metrics. 

5. CONCLUSIONS 

This paper presents an intelligent prediction 
framework for high-speed flight trajectories. Simulation 
results validate that the proposed method consistently 
captures the inherent characteristics of flight 
trajectories across diverse scenarios, delivering high 
prediction accuracy. This performance stems from the 
integration of a Seq2Seq architecture with attention-
augmented GRU neural networks, which enables 
effective modeling of long-term dependencies and 
mitigates error accumulation during prediction. Notably, 
the method achieves these results with a compact 
network design (≈333k trainable parameters) and only 
marginal training-cost overhead compared to the 
baseline GRU–Seq2Seq architecture. These 
attributes—combined with its computational 
efficiency—support real-time deployment on resource-
constrained platforms such as embedded systems. 
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