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Abstract: This paper proposes a new optimal guidance law around circular trajectories to control impact angle 
constraints in three-point guidance mode. The guidance law employs a presented heuristic dynamic programming (HDP) 
algorithm to realize close loop and provide optimized weighting matrices. To obtain the accurate optimized matrices fast, 
a multi-search mode particle swarm optimization (MMPSO) method is used. Moreover, the stationary target can be 
attacked successfully under the presented guidance, and the less control effort and smoother trajectories are well 
guaranteed. Additionally, the effectiveness and applicability of our proposed guidance scheme are explicitly verified 
through simulation tests. 
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1. INTRODUCTION 

The solution of conventional dynamic programming 
(DP) optimal guidance law is guaranteed by Bellman’s 
optimality principle. However, the guidance law heavily 
depends on choosing appropriate weighting matrices, 
which can reduce the weighted quadratic sum of the 
short period mode variables during the terminal flight. 
Therefore, the guidance problem base on DP can be 
seen as how to select the weighting matrices to fulfill 
the attack of target.  

To achieve the satisfying weighting matrices, many 
optimization algorithms have been designed. Particle 
swarm optimization (PSO) algorithm was firstly 
proposed in [1, 2]. As this method can be implemented 
easily and had perfect performance on many 
optimization problems, many scholars used it to solve 
different problems. For example, Ref. [3] employed it to 
design adaptive particle filter for the estimation of state 
of charge, Ref. [4] achieved snowpack permittivity 
retrieval by this algorithm, and Ref [5] planned 
underwater manipulator trajectory using it. Moreover, 
many variants of PSO algorithm were presented, e.g., 
multi-objective PSO in [6, 7], Multi-search PSO in [8], 
and group merging PSO in [9]. Although these methods 
can realize the optimization of parameters by 
introducing new particles during the process, the 
update mode of particle velocity and position was 
relatively single, so that theconvergence of particles 
was slow. To improve the levels of search efficiency 
and accuracy, MMPSO algorithm [10] was designed.  
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The method had faster convergence and deeper 
search depth than other PSO. Due to that, this 
algorithm can satisfy the high requirements for time 
and precision in guidance. Therefore, the presented 
HDP guidance law will employ it to optimize the weight 
matrices on three-point guidance mode which is more 
realistic in the attack of fixed target.  

To fulfill optimal guidance, many scholars designed 
different laws based on time-to-go estimation. Ref. [11] 
firstly predicted time-to-go and used it to design optimal 
guidance law. After that, a guidance algorithm based 
on dual control was proposed in [12] to achieve the 
interception of target and the estimation of time-to-go, 
but this guidance law was invalid when interceptor was 
away from homing triangle. To address the linear 
quadratic optimal control problem in guidance process, 
Ref. [13] designed an energy cost weighting matrix and 
made it as the function of time-to-go. However, 
different ways had different accuracy levels, and the 
guidance precision can be affected by the inaccurate 
estimate. Aside from that, these laws did not consider 
impact angle constraint which can guide aircraft to hit 
target with desired angle and achieve maximum 
damage effects. This is greatly essential in some 
cases, e.g., the attack of aircraft carrier or tank. To 
avoid the problems, Ref. [14] proposed an optimal 
guidance law based on a parameterized solution. This 
guidance law not only can realize the control of impact 
angle, but also can avoid the prediction of time-to-go. 
Ref. [15] presented such a guidance law based on 
neural-network to resolve the problem of nonlinear 
optimal terminal guidance with impact angle 
constraints. Ref. [16] also designed an optimal 
guidance using sliding mode control theory to achieve 
the attack of maneuvering target with desired impact 
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angle. Moreover, Ref. [17] designed such a guidance 
law to fulfill the control of both impact time and angle, 
and the need for time-to-go estimation was eliminated. 
Ref. [18] addressed the nonlinear optimal guidance 
problem with impact-time and impact-angle constraints 
without estimating the time-to-go. On the other hand, 
some guidance laws were designed based on 
programming method. Ref. [19] researched a guidance 
law using model predicted static programming (MPSP). 
Given the programming method, Ref. [20] proposed a 
law considering impact angle constraint towards air-to-
ground interceptors. Ref. [21] presented a law for air-
to-air interceptors in three-dimensional space. Ref. [22] 
proposed a generalized MPSP and employed it to 
design an impact angle constrained guidance for air-to-
surface interceptors. However, these laws based on 
static programming can only realize the suboptimal 
control of guidance system, as the required parameters 
were optimized by static scheme. To resolve the 
problem, the guidance based on heuristic dynamic 
programming was designed in this paper to attack 
stationary target and satisfy the impact angle 
constraint. 

With respect to the previously published optimal 
guidance laws, the proposed guidance scheme 
acquires several advantages: (1) the stationary target 
can be effectively attacked, and the impact angle 
constraint is simultaneously satisfied. (2) the faster 
convergence and deeper search depth are well 
guaranteed by using MMPSO, so that the optimized 
weighting matrices with higher accuracy can be 
obtained rapidly; (3) optimal control of guidance 
system, reduced control effort, smoother trajectories, 
no time-to-go, and high efficiency can be achieved. 

This paper is structured as follows. The problem 
formulation is presented in Section II. The controller 
design is proposed in Section III. In Section IV the 
MMPSO algorithm is devoted. Then comparison the 
method with the other known PSO algorithms in 
Section V part A, as well as applying the proposed 
guidance law on tactical interceptor system to validate 
the theoretical analysis in its part B. The conclusions 
are offered in Section VI, funding support in Section 
VII, and declaration of conflicting interests in Section 
VIII. 

2. PROBLEM FORMULATION 

The planar interception model is obtained from [23]. 
Now considering total force on the system, the 
nonlinear engagement kinematics equations are 

expressed in the inertial Cartesian coordinate system 
as follows 

   

xM t( ) =VM cos γM t( )( )
yM t( ) =VM sin γM t( )( )
γM t( ) = −aM t( ) VM

⎧

⎨
⎪⎪

⎩
⎪
⎪

           (1) 

where  VM  is the speed of interceptor and is a constant, 

 
γM t( )  is the path angle of interceptor, 

 
aM t( )  is the total 

acceleration and perpendicular to the velocity vector, 
and 

 
xM t( ) ,

 
yM t( )  are the position coordinates in plane 

 x axis and y axis, respectively. 

The linearizing equations of motion around a 
nominal circular trajectory are received from [33] 

   

Δr t( ) = Δvr t( )
Δvr t( ) = −Δu t( )− Kω

2Δr t( )

⎧
⎨
⎪

⎩⎪
  (2) 

where Δr and  Δvr are the deviations of the radius and 

the radial velocity, respectively.  Kω is the control gain 
and  Δu  is the deviation from the nominal acceleration.  

Using state space represents Eq. (2), obtain 

  
Δx t( ) = FrΔx t( )+ GrΔu t( )           (3) 

where 

   

Δx = [ Δr Δvr ]T ;    Fr =
0 1

−Kω
2 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
;      G r =

0
−1

⎡

⎣
⎢

⎤

⎦
⎥    (4) 

Further discretize Eq. (3) with the sampling interval 
 Δt  and receive 

  
Δx k +1( ) = FrΔx k( )+GrΔu k( )           (5) 

where  k  represents the time index, and the discretized 
matrices are obtained by   Fr = eΔt Fr

 and 

   
Gr = eτ Fr dτ

0

Δt
∫( ) Gr . The linear quadratic objective 

function is 

   

min
u0 ,,uN−1

Δxk
TQkΔxk +Δuk

T RkΔuk( )+ΔxN
T QNΔxN

k=0

N−1

∑

subject  to  Δx k+1 = FrΔxk +GrΔuk

⎧

⎨
⎪

⎩
⎪

         (6) 

where the weighting matrices satisfy    Q0 ,,QN ≥ 0  and 

   R0 ,,R N−1 > 0 , and the values of both the matrices are 
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real-time gains with  Δxk  and  Δuk . The length of the 

horizon  N is equal to
 
N = t f Δt . 

3. CONTROLLER DESIGN 

Here the optimization problem is solved analytically 
by discrete DP algorithm. Its proof was stated clearly in 
[30], as Hamilton-Jacobi-Bellman equation and Shur 
complement theorem were employed thus the proof 
process was simpler than the original. Theorem about 
optimal controller as following: 

Theorem 1 (Optimal controller): Suppose 

   Q0 ,,QN ≥ 0  and    R0 ,,R N−1 > 0 , and consider the 
following convex optimization problem under affine 
dynamic constraints with  Fr and  Gr . For Eq. (6), the 
optimal solution is affine in Δx and is explicitly given by 

 Δuk = KkΔxk             (7) 

where the control gain is given by 

  
Kk = − Gr

T Pk+1Gr + Rk( )
−1

Gr
T Pk+1Fr           (8) 

with 

  
Pk =Qk + Fr

T Pk+1Fr − Fr
T Pk+1Gr Gr

T Pk+1Gr + Rk( )
−1

Gr
T Pk+1Fr    (9) 

We know that  Pk  is computed by backward 

recursion from PN =QN , and the optimal solution of the 
problem in Eq. (6) can be obtained via solving a series 
of discrete Riccati equations. 

Remark 1: the performance of this guidance 
depends on the choose of weighting matrices  Qk and 

 Rk . Here  Kk  is used to control the dynamic response 
and precision of controller. Moreover, both the matrices 
and the preceding optimal gain matrix  Kk can be 
computed offline and tabulated in the flight computer. 

4. MMPSO ALGORITHM 

A. MMPSO Objective Function 

The optimization objective function is set at Eq. 
(10), which includes two parts: the minimum deviation 
of radius and radial velocity at the end, as well as the 
minimum control effort during the whole process. 

  
J = ΔxN

T QNΔxN + Δuτ
T Rτ Δuτ( )

τ=k

N−1

∑         (10) 

B. MMPSO Algorithm 

As we say before, MMPSO primarily improves the 
particle swarm searching mode, exactly three 
searching modes are employed by each particle to 
seek the local or global best solution, while they adjust 
the modes timely according to the dynamic 
environment. The concrete improvements, particle 
swarm searching mode and its adjustment, are shown 
as following. 

1. searching mode 

a. Roam mode. We call the particle carries out 
the activities in roam mode at  k  moment if the particle 
fly to the individual historical best  pbid

k  and take the 
search activity around it. The update equations of 
particle velocity and position as following: 

 
  

vid
k+1 = c1 ⋅ r1 ⋅ vid

k + c2 ⋅ r2 ⋅ pbid
k

xid
k+1 = xid

k + vid
k+1

⎧
⎨
⎪

⎩⎪
        (11) 

where  i  is the sequence number of particle  pi , 

   i =1,2,, N ;  k  is the number of iteration 
time,   k =1,2,,m ;  d  is the dimension of solution 
space,    d =1,2,, D ;   c1  and   c2  are the learning factors, 

  r1  and   r2  are the two random number and obey 

uniform distribution in 
 
0,1⎡⎣ ⎤⎦ .  vid

k  is the  d  dimension 

speed of particle  pi  after  k  iteration times, also  xid
k  is 

the  d  dimension position of particle  pi  after  k  
iteration times. 

b. Search mode. The particle search activities not 
only consider the  pbid

k  up to now but also the global 

best  gbd
k of the whole search space is taken into 

account at  k moment. The update equations of particle 
velocity and position for this case as following: 

  

vid
k+1 = wkvid

k + c1 ⋅ r1 ⋅ pbid
k − xid

k( )+ c2 ⋅ r2 ⋅ gbd
k − xid

k( )
xid

k+1 = xid
k + vid

k+1

⎧
⎨
⎪

⎩⎪
      (12) 

where inertia weight coefficient  wk  needs to meet 

  0 < wmin < wk < wmax , both  wmin  and   wmax  are the 

constants. There is 
  
wk = wmax − wmax −wmin( ) k

K  in 

simulation experiment, where  k  is the current optimal 
times and  K is the total optimal times. 

c. Forage mode. The particles fly to  gbd
k  just around it 

from different directions and do the search activities at 
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 k moment. Differently, just update the particle position, 
the equation as following, yet particle velocity is not 
changed. 

  xid
k+1 = gbd

k           (13) 

2. Searching Mode Adjustment 

It is known that a bird transfers information to 
another by birdsong thus the three tasks should be 
finished in advance:  

Decide the information sender. Assuming the 
population size is  M and the position of particle  pi  is 

 xid
k  at  k  moment. Ranking the whole particles in 

accordance with their fitness values from the best to 
the worst, and denote as  rik  at  k  moment, thus we 

have   1≤ rik ≤ M . When   rik =1 , particle  pi  locates the 
best position at  k  moment, similarly it locates the worst 
position when rik = M . Therefore, the smaller  the 
easier particle is to be the sender. 

Design the rule of receiving information. The 
definition of the minimum strength for receiving 
information, when particle  pi  locates on the xid

k  at 

 k moment. That is 

  
sik =

rik −1
M −1

          (14) 

where   0 ≤ sik ≤1  and 
 
sik ≤ sjk ,   i, j =1,2,,M . We know 

that the larger probability of particle  pi  receiving the 

information the smaller  sik . 

Adjust the searching mode. Denote  ϕ k  as the signal 
intensity at  k  moment and it obeys the uniform 
distribution in 

 
0,  1⎤⎦( . The regulations as following: 

i. particle  pi  searches food in roam mode if 

 ϕ k < sik . Which means the particle does not receive the 

information  ϕ k  at  k  moment; 

ii. particle  pi  activities as search mode if 

  
1
3
ϕ k < sik ≤ϕ k . Which means the particle receives the 

information  ϕ k  at  k  moment rather the information 
implies no fruits found; 

iii. particle  pi  searches in the space as foraging 

mode if if 
  
0 < sik ≤

1
3
ϕ k . Which means the particle 

receives the information  ϕ k  at  k moment as well as the 
information predicts found fruits. 

After all, the information sender is decided and 
updated timely primarily according to its fitness value, 
and the search mode adjustment for every particle is 
constantly changed by the received information 
strength, also each one activities as its selected mode 
to seek the global best solution in the whole solution 
space. Consequently, comparing to other PSO 
algorithm, MMPSO own better search efficiency and 
accuracy. 

5. SIMULATIONS  

This section includes two parts. For one, to show 
the performance of the MMPSO, this method is used to 
compare with other four PSO algorithms by eight 
professional test functions. On the other hand, the 
proposed HDP guidance law is applied to intercept 
station target. 

A. Comparing MMPSO with other PSO Algorithms 

The professional test functions consist of two 
unimodal functions and six multimodal benchmark 
functions, which are used to the comparison between 
the MMPSO and other PSO algorithms. These 
functions are divided into two groups: unimodal 
problems and unrotated multimodal problems. Their 
formulas are presented as following. 

Group A: Unimodal and Simple Multimodal 
Problems 

1. Sphere function 

  
f1 x( ) = xi

2

i=1

D

∑           (15) 

2. Rosenbrock’s function 

  
f2 x( ) = 100 xi

2 − xi+1( )
2
+ xi −1( )2⎛

⎝
⎜

⎞
⎠
⎟

i=1

D−1

∑        (16) 

Group B: Unrotated and Multimodal Problems 

3. Ackley’s function 

  

f3 x( ) = −20exp −0.2 1
D

xi
2

i=1

D

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟−

exp 1
D

cos 2π xi( )
i=1

D

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+ 20+ e

        (17) 

4. Griewank’s function 

  
f4 x( ) = xi

2

4000i=1

D

∑ − cos
xi

i

⎛

⎝
⎜

⎞

⎠
⎟

i=1

D

∏ +1            (18) 
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5. Weierstrass function 

   

f5 x( ) = ak cos 2πbk xi +0.5( )( )⎡
⎣

⎤
⎦

k=0

kmax

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i=0

D

∑ −D ak cos 2πbk i 0.5( )⎡
⎣

⎤
⎦

k=0

kmax

∑

               a = 0.5,          b = 3,             kmax = 20

 (19) 

6. Rastrigin’s function 

  
f6 x( ) = xi

2 −10cos 2π xi( )+10( )
i=1

D

∑            (20) 

7. Noncontinuous Rastrigin’s function 

   

f7 x( ) = yi
2 −10cos 2π yi( )+10( )

i=1

D

∑

yi =
xi ,                 xi <

1
2

round 2xi( )
2

, xi ≥
1
2

⎧

⎨
⎪⎪

⎩
⎪
⎪

    for  i =1,2,, D
      (21) 

8. Schwefel’s function 

  
f8 x( ) = 418.9829×D− xi sin xi

1
2

⎛

⎝
⎜

⎞

⎠
⎟

i=1

D

∑        (22) 

The engagement parameters for testing the 
performance simulation are:  x∗ is the global optimal 
and its corresponding fitness value is

 
f x∗( ) , as well as 

the search range of each function is 
  

Xmin , Xmax
⎡⎣ ⎤⎦ . These 

arguments are given in Table 1.  

Experiments are conducted to compare five PSO 
algorithms, including PSO, UPSO, FDRPSO, CLPSO 
and MMPSO algorithms. The population size is set at 
30, the iteration number is set at 3000 and Monte Carlo 
(MC) simulation time is set at 30. The curves of their 

median convergence characteristics are presented in 
Figure 1. 

We know from Figure 1 that, the proposed MMPSO 
has faster convergence and deeper search depth in 
most cases, i.e., optimized value with higher accuracy 
can be obtained in short time through this optimization 
method. This conclusion can also be gained by the 
simulation data shown in Table 2. 

B. Interceptor again Target Simulation 

Here we consider a nonlinear tactical interceptor 
system against a fixed target. It requires that the 
interceptor attacks the target with small impact angle 
and velocity error, and control effort must be the 
minimum. It is assumed that the impact angle could be 
estimated within sufficient accuracy via the inertial 
measurements. 

B.1. Design Weighting Factor Matrices 

As we know from the fore mentioned that the state 
and control weighting matrices 

  
Qi = diag q1i q2i

⎡
⎣

⎤
⎦( ) ,   i =1,2,, N  and 

 
Rj = rj I , 

   j =1,2,,N−1, respectively, have an important impact 
on the guidance law. Now we design the following time-
varying parameters for the two weighting matrices 

   

q1i = q1N e−10(N−i) N ,q2i = q2 N e−10(N−i) N ,i =1,2,, N
rj = rN−1, j=1,2,,N−1

⎧
⎨
⎪

⎩⎪
      (23) 

The exponentially growing terms in  Qk  and  Rk  are 

designed to achieve small  Δr  and  Δvr  , the peak 
values at  k = N are chosen to provide balanced 
performance on the terminal constraint satisfaction. 

Table 1: Global Optimum search Ranges and Initialization Ranges of the Test Function 

Test function	
   Expected optimal value	
   Expected optimal function value	
   Search range 

  f1
	
  

  
0,0,,0⎡⎣ ⎤⎦ 	
   0	
  

  
−100,100⎡⎣ ⎤⎦

D 	
  

  f2
	
  

  
1,1,,1⎡⎣ ⎤⎦ 	
   0	
  

  
−2.048,2.048⎡⎣ ⎤⎦

D 	
  

  f3
	
  

  
0,0,,0⎡⎣ ⎤⎦ 	
   0	
  

  
−32.768,32.768⎡⎣ ⎤⎦

D 	
  

  f4
	
  

  
0,0,,0⎡⎣ ⎤⎦ 	
   0	
  

  
−600,600⎡⎣ ⎤⎦

D 	
  

  f5
	
  

  
0,0,,0⎡⎣ ⎤⎦ 	
   0	
  

  
−0.5,0.5⎡⎣ ⎤⎦

D 	
  

  f6
	
  

  
0,0,,0⎡⎣ ⎤⎦ 	
   0	
  

  
−5.12,5.12⎡⎣ ⎤⎦

D 	
  

  f7
	
  

  
0,0,,0⎡⎣ ⎤⎦ 	
   0	
  

  
−5.12,5.12⎡⎣ ⎤⎦

D 	
  

  f8
	
  

  
420.96,420.96,,420.96⎡⎣ ⎤⎦ 	
   0	
  

  
−500,500⎡⎣ ⎤⎦

D 	
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      a     b 

 
      c     d 

 
      e     f 

 
      g     h 

Figure 1: The median convergence characteristics of 10-D test functions. (a) Sphere function. (b) Rosenbrock’s function. (c) 
Ackley’s function. (d) Griewank’s function. (e) Weierstrass function. (f) Rastrigin’s function. (g) Noncontinuous Rastrigin’s 
function. (h) Schwefel’s function. 
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Table 2: Comparison Test Function Result for PSO Algorithms 

Test 
function Algorithm Average 

Coverage value 
Average 

Coverage value 
Test 

function Algorithm Average 
Coverage value 

Average 
Coverage 

value 

PSO 0.0192 2931 PSO 0.0021 2773 

UPSO 6.2442e-61 2997 UPSO 0.6221 2998 

FDRPSO 5.1344e-152 2998 FDRPSO 0.0023 2994 

CLPSO 1.4913e-31 2999 CLPSO 1.5472 2986 

f1
	
  

MMPSO 3.1507e-144 2986 

f2
	
  

MMPSO 2.3526e-07 2537 

PSO 0.0766 2943 PSO 0.1689 2917 

UPSO 3.5527e-15 1587 UPSO 0 1517 

FDRPSO 3.5527e-15 1587 FDRPSO 0.0246 1680 

CLPSO 3.5527e-15 2985 CLPSO 1.1707e-06 2999 

f3
	
  

MMPSO 0 1202 

f4
	
  

MMPSO 0 491 

PSO 0.3652 2786 PSO 2.0946 2904 

UPSO 0 1673 UPSO 4.8619e-12 2992 

FDRPSO 0 1432 FDRPSO 0 1551 

CLPSO 0 2589 CLPSO 0 2935 

f5
	
  

MMPSO 0 2486 

f6
	
  

MMPSO 0 794 

PSO 3.1072 2849 PSO 0.1301 2922 

UPSO 0 2423 UPSO 0 1544 

FDRPSO 0 1591 FDRPSO 236.8767 924 

CLPSO 0 2988 CLPSO 0 2211 

f7
	
  

MMPSO 0 772 

f8
	
  

MMPSO 1.7846e-08 2272 

Remark 2: the experiment codes for PSO, UPSO, FDRPSO and CLPSO methods are available from http://www.ntu.edu.sg/home/epnsugan. 

The nonlinear kinematics mode in the inertial 
Cartesian frame is used here. The parameters are as 
follows: the range from launch point to the stationary 
target is 5000m, the speed of the interceptor is 200m/s, 
the desired launch angle and desired impact angle  ξdes  
are equal to 75deg. The heading error (HE) is defined 
as the difference between the desired and real launch 
angle, and it equals to 5deg, the acceleration of the 
interceptor is bounded to 10g (322  m s2 ). Similarly, the 
parameters of MMPSO algorithm for achieving optimal 
weighting matrices are as follows: the population size is 
set at 30, the iteration number is set at 30, the MC is 
set at 30, the maximum and minimum of inertia weight 
coefficient  w  are respectively set at 0.9 and 0.4, the 
dimension of space is set at 3, the range of particle 
velocity is   

V ∈ -2,2⎡⎣ ⎤⎦ . Assuming that the optimal 
components of  Q  and  R in the extremely enormous 

range, i.e.,
  
q1N ,q2 N ,rN−1 ∈ 0.01,1e+05⎡⎣ ⎤⎦ , the two learning 

factors are   c1  and   c2 , and both of them are equal to 2. 
The curve about the minimum fitness value is shown in 
Figure 2. 

 
Figure 2: Curve about minimum fitness value. 

We can obtain the optimal weight values for   q1N , 

  q2 N and   rN−1  from Figure 2, e.g., 207.0807, 5886.8778 
and 6996.2208, respectively. It reveals that the 
dramatically declined tendency occurs when the 
iteration number is about three and the fitness value 
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tends to converge when the iteration number is about 
five, i.e., the MMPSO method has the fast converge 
property. These weight values are used to the 
proposed HDP guidance and realize the simulations 
about interceptor trajectory and acceleration with 
expected impact angle and HE, which are shown in 
Figure 3. 

Figure 3a demonstrates that the target can be 
intercepted successfully when the optimal weight 
matrices are applied into the proposed guidance law. 
This means that the obtained weight values are 
effective and can make the terminal states to reach the 
expected states, i.e., the expected radius and radial 
velocity are achieved. On the other hand, we see from 
Figure 3b that the control effort is smaller when 
interceptor is closer to the terminal. This is 
correspondent to the theory. 

Remark 3: the above simulations are an example of 
applying MMPSO algorithm to obtain the weighting 
matrices for HDP guidance law. The received weighting 
matrices values are used to the following sections. 

B.2. Effect of Heading Errors 

Here we present the nominal trajectories of 
interceptor from launch point to the target, the two 
points are denoted by two large dots in Figure 4, and 
the different desired impact angles  ξdes  range from -

150deg to 150deg. The two weighting matrices  Qi  and 

 
Rj  are arbitrarily chosen in the range of mentioned 

before, and we chose   q1N ,q2 N ,rN−1  are equal to 0.01. As 
there is no HE existed, the corresponding guidance 
accelerations are constant and equal to 

  
aM =VM

2 R = 2 VM
2 D( )sin ξdes( ) in this case. The curves 

of nominal trajectories and acceleration for different 
desired impact angles are shown in Figures 4 and 5. 

 
Figure 4: Nominal trajectories for different desired impact 
angles. 

 

 
Figure 5: Nominal acceleration for different desired impact 
angles. 

The trajectories and accelerations of interceptor 
with different HE and the specific expected impact 

 
      a     b 
Figure 3: Interceptor trajectory and acceleration simulation for expected impact angle and HE are equal to 75deg and 5deg. (a) 
Interceptor trajectory simulation. (b) Acceleration simulation.  
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angles (0deg and 30deg) are shown in Figures 6-9. 
The expected initial launch angles are equal to the 
expected impact angles in the following sections. As 
there are different HE angles, different weighting 
matrices values are needed. The optimal weighting 
matrices achieved by MMPSO are displayed in Table 
3. 

 
Figure 6: Trajectories with desired impact angle 0deg and 
different heading errors. 

Figures 6 and 8 show that interceptor can hit the 
target with different expected impact angles under 
different HE angles. Even though the HE is large, such 
as ±150 deg with impact angle 0 deg and ±120deg with 
impact angle 30deg, the aircraft guided by the 
proposed law can also fulfill the interception. This 
means that the presented guidance law with the 
optimized weighting matrices is effective. Furthermore, 
we can get from their acceleration curves displayed in 

Figures 7 and 9 that the large guidance accelerations 
are needed in these cases to realize the attack at the 
initial phase when there are HE angles in the system. 
However, the required accelerations can be decreasing 
over time, and can gradually close to 0. It means that 
the trajectories can close to the optimal with minimum 
control effort under the diverse HE angles during the 
process. Considering that the changes of trajectory and 
acceleration with both the expected impact angles is 
basically identical, only the situation that impact angle 
equals to 30deg is discussed in the following sections. 

 
Figure 7: Acceleration with desired impact angle 0deg and 
different heading errors. 

B.3. Analysis of Interceptor Velocity Direction  

As γ  is the sum of the expected launch angle and 
HE angle, this angle can be used to analyze the effect 

Table 3: Weight Matrices of Different HE for  ξdes are Equal to 0deg and 30deg  

  weight	
  matrix	
  value	
  ( ×104 )   weight	
  matrix	
  value ( ×104 ) 

  ξdes(deg)    HE(deg)    q1N
 

  q2 N
 

  rN−1
 

  ξdes(deg)    HE(deg)  
  q1N

 
  q2 N

 
  rN−1

 

150 0.1786 1.5600 8.7842 120 0.0577 0.6824 7.0015 

112.5 1.4289 1.9327 9.3636 90 0.5535 0.8663 10 

75 4.1119 10 9.0972 60 1.7520 9.9999 9.9999 

37.5 6.2007 10 10 30 2.8246 3.4582 10 

0 0.7574 5.0979 10 0 1E-06 1E-06 10 

-37.5 6.2645 8.7630 10 -30 5.8224 5.9333 10 

-75 3.4159 8.1106 7.5227 -60 7.0129 4.1765 9.7134 

-112.5 0.5441 0.2442 3.7539 -90 5.9364 1E-06 10 

0 

-150 0.0952 0.01 10 

30 

-120 2.4801 10 10 

 
ξdes : Desired Impact Angle; HE: Heading Error. 
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caused by HE angles, and can describe the change of 
velocity with interceptor in Cartesian coordinates. The 
curves for γ  angle under different HE angles are 
shown in Figure 10. 

 
Figure 8: Trajectories with desired impact angle 30deg and 
different heading errors. 

 

 
Figure 9: Acceleration with desired impact angle 30deg and 
different heading errors. 

We see from Figure 10 that these curves can 
converge to the expected impact angle, i.e., 30deg, 
even though their initial angles are diverse. The change 
totally agrees with the theoretical analysis. Moreover, it 
also reflects the validity of the proposed guidance law. 

B.4. Analysis of the State Variable and the 
Deviation of Impact Angle 

 Δr  is the deviation between the real trajectory and 
its nominal. Similarly,  Δvr and Δξ  represent deviation 
with radial velocity and impact angle, respectively. Here 

the changes of these three important error variables 
under the impact of different HE angles are provided 
and presented in Figures 11-13. 

 
Figure 10: Interceptor velocity direction change with the 
expected impact angle 30deg. 

 

 
Figure 11: The change of the radius deviation for the expect 
impact angle 30deg. 

We see from Figure 11 that the change of  Δr  is 
different from  Δvr  and Δξ . Especially,  Δr  is equal to 
zero under different HE angles at the initial moment, as 
the interceptor is located in the launch point at that 
moment, and their real radiuses are equal to the 
nominal ones. However, the values of  Δr  are 
increasing over time and reaching their peak ones, and 
then tend to zero gradually. This means that this type 
of error can be reduced at terminal phase. Aside from 
that, it shows from Figures 12 and 13 that both the  Δvr  
and Δξ  have the identical tendency. Exactly, their 
values become large at the initial phase due to the HE, 
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i.e., the maximum values of  Δvr and Δξ  respectively 
reaches to 200m/s and 1deg when HE equals to 
120deg, but the error values can swiftly decline and 
close to zero when trajectories converge to their 

nominal ones. It indicates that both types of the errors 
can also be diminished under the presented guidance 
law. 

B.5. Influence of the Interceptor Dynamics 

The comparison of the trajectory and corresponding 
acceleration between having and without autopilot lag 
is presented in this section. The autopilot is modeled as 
first-order dynamics and its transfer function is 

  

areal

acom

=
1

τ As+1
          (24) 

where  areal  is the real acceleration for interceptor and 

 acom  is the command acceleration. The engagement 
parameters for the situation as follows: the autopilot lag 

 τ A  is set at 1(in seconds), the three desired impact 
angles are set at 5deg, 40deg and 75deg, and HE is 
set at 5deg. The weighting matrices for without and 
having lag are listed in Table 4. The comparison curves 
of trajectory and acceleration for these angles are 
shown in Figures 14 and 15. 

Figures 14 and 15 demonstrate that the trajectory 
and acceleration curves for lag system approximately 
coincide with the without ones, especially for at the 
terminal phase. This means that the proposed 
guidance law can also be useful for analyzing the lag 
ones, although there is the minute difference at the 
initial and middle phases. 

B.6. Comparison Between HDP and BPNG 

To illustrate the performance of the proposed 
guidance law, the comparison between this guidance 
law and BPNG [24] is made in this section. The 
parameters are as follows: the weighting matrices for 
HDP are given in Table 5, the BPNG gain  N BPNG  and 

 ηBPNG  are respectively set to 3 and 1, the desired 
impact angles are in the interval of 5 to 55 deg, and the 
heading error is equal to 5 deg (for impact angles that 
are larger than 55deg, the BPNG guidance law 
diverges and fails to intercept the target). The 

 
Figure 12: The change of the radial velocity deviation for the 
expect impact angle 30deg. 

 

 
Figure 13: The change of the impact angle deviation for the 
expect impact angle 30deg. 

Table 4: Weight Matrices for ξdes are Equal to 5 deg, 25 deg and 75 deg and HE is 5 deg 

  without lag weight	
  matrix value( ×104 ) with lag weight matrix value ( ×104 ) 

  HE(deg)  
  ξdes(deg)    q1N

 
  q2 N

 
  rN−1

 
  q1N

 
  q2 N

 
  rN−1

 

 5 1.7251 10 8.9351 1.4080 4.4086 8.9241 

5 40 7.4844 7.7793 9.7533 1.9484 10 10 

 75 6.26543 10 10 2.1963 10 10 

 
ξdes : Desired Impact Angle; HE: Heading Error. 
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simulation results of trajectory, acceleration and control 
effort are shown from Figures 16-18, and the control 
effort values with BPNG and HDP under three HE 
angles are shown in Table 6. 

 
Figure 14: Comparison the trajectory for with/without 
autopilot lag. 

 
Figure 15: Comparison the acceleration for with/without 
autopilot lag. 

 

Table 5: Weight Matrices for ξdes are Equal to 5 deg, 30 
deg and 55 deg, and HE is 5 deg 

  without lag weight	
  matrix value( ×104 )	
  

  HE(deg)  
  ξdes(deg)    q1N

 
  q2 N

 
  rN−1

 

 5 1.7251 10 8.9351 

5 30 8.836 8.7099 8.7800 

 55 0.81386 10 2.6584 

 
ξdes : Desired Impact Angle; HE: Heading Error. 

From Figure 16, we see that the two guidance laws 
can fulfill the interception extremely even when the 

desired impact angle is large, i.e., 55deg. However, the 
trajectories of BPNG are more curved than those of 

 
Figure 16: Trajectory comparison between HDP and BPNG. 

 

 
Figure 17: Acceleration comparison between HDP and 
BPNG. 

 

 
Figure 18: Control effort comparison between HDP and 
BPNG. 
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HDP. It indicates that BPNG needs more guidance 
acceleration compared with the HDP, although both of 
them are valid. This can be verified by Figure 17. It 
shows from this figure that the required guidance 
accelerations with the proposed HDP are smaller than 
those of BPNG under three desired impact angle, 
especially for the large desired impact angle, i.e., 
55deg, at the terminal phase. This means that less 
energy is required by the HDP when intercepting the 
stationary target. Furthermore, we can obtain the 
identical conclusion from Figure 18. It displays that the 
control effort values with both the laws are basically 
identical when the impact angles are small, but the 
larger control effort is needed by BPNG compared with 
the HDP when the impact angles are large. This can 
also be acquired by Table 6. It is shown that the values 
of control effort with BPNG and HDP are basically 
equal when HE angles equals to 5deg and 30deg. 
However, the value with HDP is evidently smaller than 
BPNG when HE is equal to 55deg, i.e., 8.7398e+6 and 
9.9502e+6, respectively. 

6. CONCLUSION 

This paper presents a new guidance law for circular 
trajectories. The law is the combination of the MMPSO 
and HDP algorithm. To fast obtain the two optimized 
weighting matrices with higher accuracy, MMPSO is 
used since it has faster convergence and deeper 
search depth compared with other PSO. On the other 
hand, to fulfill the optimal control of the guidance 
system, the HDP method is proposed. Moreover, the 
weighting matrices acquired from MMPSO are used to 
design the guidance law based on HDP, so that the 
fixed target can be attacked successfully, and the 
desired impact angle can well be satisfied. Besides, the 
presented law has the following advantages: reduced 
control effort, smoother trajectories, and high efficiency. 
These advantages can be validated through 
simulations. 

Table 6: The Comparison of Control Effort between 
BPNG and HDP under Three HE Angles 

  HE(deg)  BPNG (m2/s2) HDP (m2/s2) 

5 2.5796e+5 2.6456e+5 

30 2.9825e+6 3.0186e+6 

55 9.9502e+6 8.7398e+6 
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