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Abstract：To meet the urgent need for real-time and accurate flight time prediction in intelligent aeronautical systems, 

this paper proposes a rapid prediction framework for aerial vehicle flight time based on the Light Gradient Boosting 
Machine (LightGBM). To validate the method's effectiveness, a high-dynamic autonomous flight scenario with a well-
defined dynamic model was selected. Experimental results demonstrate that, compared to traditional physics-based 
numerical integration, the trained LightGBM model maintains prediction accuracy while reducing the time per prediction 
by approximately two orders of magnitude to the millisecond level. Furthermore, the model's lightweight nature helps 
reduce the energy consumption of computational tasks, aligning with sustainable computing principles. The proposed 
framework is generalizable, with its technical pathway also applicable to other aeronautical fields requiring rapid time 
prediction, such as estimating time of arrival in civil aviation. 
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1. INTRODUCTION 

With the advancement of artificial intelligence and 

aerospace technologies, intelligent autonomous aerial 

vehicles (including unmanned aerial vehicles, 

advanced air mobility vehicles, and high-dynamic 

specialty aerial vehicles) are gradually becoming the 

core units for future air traffic and mission execution [1]. 

In the coordinated operations and real-time aerospace 

mission planning of these complex systems, the rapid 

and accurate prediction of aerial vehicle flight time is a 

critical prerequisite for achieving efficient decision-

making and ensuring spatiotemporal coordination [2-3]. 

Whether for a swarm of UAVs conducting area 

surveillance or a high-speed aerial vehicle completing 

time-sensitive missions, accurately estimating the time 

to reach the target point is directly related to mission 

success and safety. 

Traditional flight time prediction methods primarily 

rely on physics-based numerical integration or look-up 

tables [4]. While the former offers high accuracy, it 

suffers from long computation times, making it difficult 

to meet the demands of online real-time planning. The 

latter, although fast, has weak generalization 

capabilities and cannot adapt to dynamically changing 

initial conditions and environmental parameters. 

Therefore, developing a prediction model that 

combines both high accuracy and high real-time 

performance has become an urgent technical 

challenge in the domain of intelligent aeronautical 

systems. 
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In recent years, machine learning algorithms 

represented by the Gradient Boosting Decision Tree 

(GBDT) have demonstrated significant potential in 

numerous regression prediction tasks, owing to their 

powerful nonlinear fitting capabilities and excellent 

predictive performance [5-6]. Among them, the Light 

Gradient Boosting Machine (LightGBM) is particularly 

suitable for deployment in resource-constrained or 

latency-sensitive real-time systems due to its faster 

training speed, lower memory footprint, and superior 

processing efficiency [7]. However, despite the 

widespread application of LightGBM in various fields 

[8-12], its application to the regression prediction of the 

entire flight time for high-dynamic autonomous aerial 

vehicles—a problem characterized by strongly 

nonlinear dynamics—remains relatively unexplored. 

Specifically, validating its predictive efficacy in high-

dynamic flight scenarios with extremely stringent time 

constraints is of great significance for assessing the 

algorithm's applicability in broader intelligent 

aeronautical missions. 

To address this gap and thoroughly examine the 

performance of the LightGBM algorithm in complex 

aeronautical prediction tasks, this paper employs a 

missile—a typical high-dynamic autonomous aerial 

vehicle—as the experimental subject and proposes a 

LightGBM-based rapid flight time prediction framework. 

First, the fundamental principles of LightGBM are 

systematically introduced. Subsequently, based on an 

analysis of the factors influencing missile flight time, 

model features are selected and a regression 

prediction model is constructed. Finally, its 

effectiveness is validated through simulation 

experiments. Experimental results indicate that, 
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compared to traditional physics-based numerical 

methods, the proposed approach maintains prediction 

accuracy while improving computational speed by 

several orders of magnitude, achieving real-time 

prediction at the millisecond level. Furthermore, this 

paper discusses the potential and the technical 

pathways for its migration to a broader range of 

intelligent aeronautical systems. 

2. FUNDAMENTALS OF LIGHTGBM 

LightGBM was first proposed in 2017 by 

researchers including Tianqi Chen from Microsoft 

Research Asia. It quickly gained widespread attention 

in the machine learning community, becoming a rising 

star in the field [7]. It is fundamentally an ensemble 

learning method. Its basic principle aligns with that of 

the GBDT and the Extreme Gradient Boosting 

(XGBoost) algorithms, which also use decision trees as 

base learners. The method employs the negative 

gradient of the loss function as an approximation of the 

residual for the current decision tree to fit new trees, 

constructing a powerful model by combining the 

predictions of multiple base learners. Compared to 

XGBoost, LightGBM focuses on optimizing model 

training speed. It introduces several enhancements, 

including a histogram-based decision tree algorithm, a 

leaf-wise growth strategy with depth limitation, 

Gradient-based One-Side Sampling (GOSS), and 

Exclusive Feature Bundling (EFB). These 

improvements endow LightGBM with advantages such 

as higher training efficiency, lower memory usage, 

improved accuracy, support for parallel learning, and 

the capability to handle large-scale data [5-6, 8]. 

2.1. Improvements and Optimizations in LightGBM 

(1) Histogram-based Decision Tree Algorithm. The 

fundamental concept is to first discretize continuous 

floating-point feature values into K  integers, while 

constructing a histogram with a width of K . While 

traversing the data, statistics are accumulated in the 

histogram using the discretized values as indices. After 

a single pass through the data, the histogram contains 

the accumulated feature statistics. The optimal split 

point is then found by traversing these discretized 

values in the histogram. The principle of the histogram 

algorithm is illustrated in Figure 1. The advantages of 

this approach are reduced memory usage and lower 

computational cost, as it eliminates the need for storing 

pre-sorted results and only requires saving the 

discretized feature values. 

 
Figure 1: Schematic diagram of the histogram algorithm. 

Furthermore, the histogram algorithm can be 

accelerated through subtraction. The histogram of a 

leaf node can be obtained by subtracting the histogram 

of its sibling node from the histogram of their parent 

node, which can double the training speed. Typically, 

constructing a histogram requires traversing all data 

points on that leaf. However, histogram subtraction only 

needs to traverse the K  bins of the histograms 

involved. This subtraction process is illustrated in 

Figure 2. 

 

Figure 2: Schematic diagram of subtracting histograms. 

(2) Leaf-wise Growth Strategy with Depth Limitation. 

The fundamental concept of the leaf-wise decision tree 

growth strategy is to iteratively find and split the leaf 

with the highest split gain among all current leaves. 

Compared to the level-wise growth strategy, this 

approach can achieve greater error reduction and 

better accuracy for the same number of splits. 

However, it may result in deeper trees and potential 

overfitting. Therefore, LightGBM incorporates a 

maximum depth constraint on top of the leaf-wise 

strategy to ensure high efficiency while preventing 

overfitting. The leaf-wise tree growth is illustrated in 

Figure 3. 

 
Figure 3: Schematic diagram of the leaf-wise tree growth. 
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(3) Gradient-based One-Side Sampling (GOSS). 

According to the definition of information gain 

calculation, samples with larger gradients have a 

greater impact on information gain. GOSS first sorts all 

values of the feature to be split in descending order 

based on their absolute magnitude and selects the top 

a  data points with the largest absolute values. Then, it 

randomly selects b  data points from the remaining 

data with smaller gradients. These b  data points are 

subsequently multiplied by a weighting coefficient c . 

Finally, information gain is calculated using these ba +  

data points. This approach allows the algorithm to 

focus more on under-trained samples without 

significantly altering the distribution of the original 

dataset. From the perspective of sample reduction, 

GOSS excludes most samples with small gradients and 

uses only the remaining samples to compute 

information gain, making it an algorithm that balances 

data reduction and accuracy preservation. 

(4) Exclusive Feature Bundling (EFB). EFB is an 

efficient, lossless technique designed to reduce feature 

dimensionality. Its core idea is to combine multiple 

approximately mutually exclusive features into a new 

"bundled feature." This reduces the total number of 

features the model needs to process without losing the 

original information. 

2.2. Advantages of LightGBM for Missile Flight 
Time Prediction 

For regression problems demanding high precision 

and efficiency, such as missile flight time prediction, 

LightGBM offers the following advantages: 

(1) High Prediction Accuracy and Efficient Model 

Convergence. Missile flight time is influenced by the 

complex coupling of multiple factors, including initial 

velocity, launch angle, and atmospheric conditions. The 

depth-limited leaf-wise growth strategy employed by 

LightGBM can construct decision trees with superior 

and more refined structures compared to traditional 

level-wise strategies under the same number of splits. 

This effectively captures complex nonlinear 

relationships, leading to higher prediction accuracy. 

Concurrently, overfitting is effectively prevented by 

imposing a maximum depth limit. 

(2) High Training Efficiency and Low Computational 

Resource Consumption. The histogram-based decision 

tree algorithm and GOSS used by LightGBM can 

significantly enhance training efficiency and reduce 

machine learning training time while maintaining 

accuracy. The histogram algorithm itself has low 

memory overhead. Coupled with the EFB technique 

which reduces the number of features, memory 

consumption is notably decreased. This makes it 

feasible to process large-scale ballistic simulation data 

on conventional computing equipment. 

(3) Model Interpretability for Assisting Physical 

Analysis and Design. LightGBM's built-in feature 

importance evaluation function can quantify the 

contribution of each input variable to the missile flight 

time and rank the importance of various features 

influencing it. This aids engineers in understanding the 

primary and secondary factors affecting flight time, 

providing valuable insights for physical analysis and 

design considerations. 

3. FEATURE SELECTION FOR THE MISSILE 
FLIGHT TIME PREDICTION MODEL 

According to missile ballistics, under standard 

conditions, the total flight time of a missile is a 

deterministic function of the launch point's longitude, 

latitude, and altitude, as well as the target point's 

longitude, latitude, and altitude [4]. The standard 

ballistic initial calculation data for a missile includes six 

parameters: launch point longitude 
0

 , launch point 

latitude 
0
B , launch point altitude 

0
H , target point 

longitude 
m

 , target point latitude 
m
B , and target point 

altitude 
m

H . Since the Earth is a rotating ellipsoid, the 

main factors influencing missile flight time can be 

simplified to five parameters through coordinate 

transformation: launch point latitude 
0
B , geodesic 

distance between the launch and target points 
d
L , 

geodetic azimuth between the launch and target points 

d
A , launch point altitude 

0
H , and target point altitude 

m
H  [2-3]. 

3.1. Launch Point Latitude 

Variations in launch point latitude 
0
B  affect missile 

flight time due to changes in the Earth's gravitational 

field and its rotational linear velocity, with the combined 

effect being related to the geodetic azimuth 
d
A . When 

the geodetic azimuth is  180~0 , an increase in launch 

point latitude leads to a decrease in flight time; when 

the geodetic azimuth is  360~180 , an increase in 

launch point latitude results in an increase in flight time. 

Details are illustrated in Figure 4. 

3.2. Missile Range 

For medium to long-range ballistic missiles, a larger 

range corresponds to a longer flight time, with the 
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relationship between flight time and range being 

approximately linear, as detailed in Figure 5. For short-

range ballistic missiles, when the range is relatively 

small, the total flight time for a shorter range might 

actually be longer than that for a slightly larger range. 

This can occur because, to ensure the missile's active 

phase burnout occurs outside the dense atmosphere, 

the trajectory for a very short range may necessitate 

specific adjustments that impact the total time of flight. 

 
Figure 4: Schematic diagram of the flight time changes with 

the geodetic azimuth and the latitude of the launch site. 

 
Figure 5: Schematic diagram of the variation of flight time of 

medium and long-range missiles with range. 

3.3. Geodetic Azimuth 

The influence of the geodetic azimuth 
d
A  on missile 

flight time is primarily caused by the Coriolis 

acceleration resulting from the Earth's rotation. When 

the launch point is located in low-latitude regions, the 

variation of flight time with the 
d
A  approximately 

follows a sinusoidal curve, as specifically shown in 

Figure 6(a). When the launch point is in high-latitude 

regions, the variation of flight time with the 
d
A  

gradually deviates from a sinusoidal curve but remains 

a periodic function, as detailed in Figure 6(b). 

3.4. Launch Point Altitude and Target Point Altitude 

Research in literature [3] indicates that launch point 

altitude and target point altitude have a minor impact 

on parameters such as the flight path angle and aiming 

azimuth, and their influence on the total flight time is 

negligible. 

 
(a) 

 
(b) 

Figure 6: Schematic diagram of the variation of missile flight 

time with the azimuth. 

Consequently, for the model in this paper, the input 

features are selected as launch point latitude 
0
B , 

missile range 
d
L , and geodetic azimuth 

d
A , while the 

output feature is missile flight time T . The process of 

feature selection for the missile flight time prediction 

model is illustrated in Figure 7. 

 

Figure 7: Block diagram of the feature selection process. 
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4. RAPID PREDICTION METHOD FOR MISSILE 
FLIGHT TIME BASED ON LIGHTGBM 

4.1. Model Development Environment and 
Procedure 

The system configuration for this paper is as 

follows: the operating system is Windows 10, the 

processor is an Intel® Core™ i7-4702MQ @ 2.20GHz, 

the programming language is Python 3.10.18, and the 

LightGBM 4.6.0 package is employed to build the 

prediction model. The training workflow for the 

prediction model is illustrated in Figure 8. 

 

Figure 8: Block diagram of the predictive model training 

process. 

4.2. Dataset Source and Partition 

This paper employs a ballistic simulation software to 

generate 29,791 trajectories under varying conditions 

of launch point latitude 
0
B , missile range 

d
L , and 

geodetic azimuth 
d
A  within the specified range 

envelope, following a discrete sampling rule. The 

corresponding flight time for each case is obtained. For 

model construction, this dataset of 29,791 samples 

serves as the training data for LightGBM. The dataset 

is partitioned into training and testing sets at an 80/20 

ratio. The training set is used for model fitting, while the 

testing set is reserved for model evaluation. 

4.3. Hyperparameter Optimization 

The LightGBM algorithm encompasses numerous 

adjustable hyperparameters. Appropriate parameter 

settings can enhance both the training speed and 

prediction accuracy of the model. While the commonly 

used grid search method can find the best-performing 

parameters by exhaustively iterating through candidate 

combinations, it suffers from high computational cost 

and low search efficiency. This paper utilizes the 

BayesianOptimization library to perform Bayesian 

optimization [13] for selecting optimal parameters. This 

approach can find a relatively good hyperparameter 

combination within a limited timeframe. After 30 search 

iterations, a relatively optimal set of hyperparameters 

was identified. The total search time was 51.52 s. The 

optimal hyperparameter combination is presented in 

Table 1. 

Table 1: Optimal Combination of Hyperparameters. 

Hyperparameter Value 

num_leaves 66 

max_depth 15 

learning_rate 0.3 

feature_fraction 0.5 

bagging_fraction 1.0 

bagging_freq 10 

lambda_l1 0.0 

lambda_l2 0.0 

min_data_in_leaf 10 

5. SIMULATION EXPERIMENTS AND RESULTS 
ANALYSIS 

5.1. Evaluation of Model Prediction Results 

The optimal hyperparameters were input into the 

LightGBM model, yielding a Bayesian-optimized missile 

flight time prediction model. The model's predictive 

performance was then evaluated using the testing set, 

with an early stopping mechanism employed 

(maximum iterations: 1000). The final model prediction 

results showed a coefficient of determination (R²) of 

0.999, a Mean Absolute Error (MAE) of 0.0001, a Root 

Mean Square Error (RMSE) of 0.0001, and a model 

training time of 1.61 s. 

Figure 9 presents the scatter plot of predicted 

versus actual values, showing the points tightly 

clustered around the diagonal line. Figure 10 displays 
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the residual plot, where the residual points are 

randomly distributed above and below the zero line. 

Figure 11 compares predicted and true values for 50 

randomly selected data groups, demonstrating nearly 

perfect overlap. Figures 12 and 13 show the training 

curves for MAE and RMSE, respectively, indicating that 

both the training and testing set curves rapidly 

decrease before stabilizing. Collectively, these five 

figures illustrate the excellent performance of the 

prediction model from different perspectives. 

 

Figure 9: Scatter plot of predicted and actual values. 

 

Figure 10: Residual plot of predicted and actual values. 

 

Figure 11: Comparison chart between predicted and actual 

values of 50 random data sets. 

LightGBM also provides a feature importance 

analysis function. As analyzed by the model and shown 

in Figure 14, the variation in missile range is the 

primary factor influencing flight time, accounting for 

99.39% of the importance. This is followed by the 

geodetic azimuth and the launch point latitude, 

contributing 0.51% and 0.1%, respectively. 

 

Figure 12: MAE training curve. 

 

Figure 13: RMSE training curve. 

 

Figure 14: Bar chart of feature importance analysis. 

5.2. Comparative Analysis of Prediction Results 
from Different Models 

To demonstrate the advantages of the LightGBM 

algorithm in predicting missile flight time, the LightGBM 

model was compared and analyzed against the BP 

Neural Network model [3, 14], the Random Forest 

model [15], and the XGBoost model [16]. Tables 2, 3, 

and 4 present the hyperparameter settings for the BP 
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Neural Network, Random Forest, and XGBoost 

models, respectively. 

Table 2: Hyperparameters of BP Neural Network. 

Hyperparameter Value 

hidden_layer_sizes (100,50,25) 

activation relu 

solver adam 

alpha 0.0001 

batch_size 128 

learning_rate adaptive 

learning_rate_init 0.001 

max_iter 1000 

early_stopping True 

validation_fraction 0.1 

n_iter_no_change 50 

 

Table 3: Hyperparameters of Random Forest. 

Hyperparameter Value 

n_estimators 800 

max_depth 30 

min_samples_split 2 

min_samples_leaf 1 

max_features 0.8 

bootstrap True 

n_jobs -1 

 

Table 4: Hyperparameters of XGBoost. 

Hyperparameter Value 

max_depth 12 

learning_rate 0.1 

n_estimators 1000 

subsample 0.8 

colsample_bytree 0.8 

reg_alpha 0.01 

reg_lambda 0.01 

min_child_weight 5 

 

Based on the calculations, the performance metrics 

of the four prediction models are shown in Table 5. A 

comparative analysis of the prediction results indicates 

that the R² for all four models is close to 1, suggesting 

excellent fitting performance on the given dataset by 

each model. Notably, compared to the other three 

algorithms, the LightGBM algorithm achieves a lower 

MAE and RMSE, while also requiring less training time. 

Consequently, in terms of model performance ranking, 

LightGBM demonstrates the best results, followed by 

XGBoost, then the BP Neural Network and Random 

Forest. 

Table 5: Performance comparison of four prediction 
models. 

Model MAE RMSE R² 
Training 
Time (s) 

BP Neural Network 0.6443 0.8613 0.993 20.47 

Random Forest 0.9256 1.3318 0.986 7.21 

XGBoost 0.0021 0.0024 0.998 4.51 

LightGBM 0.0001 0.0001 0.999 1.61 

 

5.3. Rapid Prediction of Missile Flight Time 

Based on the pre-trained LightGBM model, rapid 

prediction of missile flight time was conducted. 

Experimental results indicate that the prediction for a 

single missile took 2 ms. The total time for a batch 

prediction of 200 missiles was 6 ms, resulting in an 

average prediction time of 0.03 ms per missile. 

However, if traditional numerical integration methods 

are employed, predicting the flight time of a single 

missile typically requires on the order of minutes. This 

clearly demonstrates that the method proposed in this 

study achieves an improvement in prediction efficiency 

by orders of magnitude, effectively meeting the 

timeliness requirements for missile flight time 

prediction. 

6. PRACTICAL IMPLICATIONS AND GENERAL- 
IZABILITY DISCUSSION 

The experiment demonstrates that the flight time 

prediction model for high-dynamic autonomous aerial 

vehicles, built upon LightGBM, achieves millisecond-

level prediction response while maintaining high 

predictive accuracy. This "instantaneous" 

computational capability allows it to be seamlessly 

integrated into online aerospace mission planning 

systems or onboard real-time decision-making 

systems. In dynamic and uncertain environments, 

aerial vehicles can leverage this capability for 

instantaneous evaluation and optimization of numerous 

candidate trajectories, enabling adaptive online re-

planning, thereby significantly enhancing the system's 



8    Journal of Intelligent Aeronautical Systems and Sustainable Flight Technologies, 2026, 2 Li et al. 

autonomy and agility. Furthermore, the model's 

lightweight nature places minimal demands on 

hardware computing power, serving as an efficient 

alternative to high-energy-consumption physical 

simulation models. Its application in scenarios such as 

large-scale airspace scheduling or dense swarm 

simulation can substantially reduce the computational 

energy consumption of central servers. This directly 

aligns with the pursuit of "computational sustainability" 

and "green computing" in the development of intelligent 

aeronautics. 

Although this paper employs a typical high-dynamic 

autonomous aerial vehicle as the validation platform, 

the proposed LightGBM prediction framework is 

fundamentally a general-purpose, data-driven mapping 

model with strong methodological extensibility, allowing 

for migration to various intelligent aeronautical 

prediction tasks. One direct application is the prediction 

of the Estimated Time of Arrival (ETA) in civil aviation. 

The key to successfully migrating this framework to 

such a scenario lies in the adaptation of feature 

engineering and data pipelines: the input features need 

to be expanded to encompass multi-source information 

including real-time weather, air traffic control 

instructions, aircraft performance, and route structure. 

Concurrently, an automated data processing pipeline 

should be constructed based on historical flight data 

(e.g., ADS-B records). Through processes of cleaning, 

alignment, and feature extraction, high-quality "state-

time" training samples can be generated. This process 

enables the model to learn the comprehensive impact 

of complex operational environments on flight time, 

providing more accurate and rapid decision support for 

airport arrival management and air traffic flow 

prediction. This demonstrates the potential for 

extending the proposed method from a specific 

validation case to a broader range of intelligent 

aeronautical applications. 

7. CONCLUSION 

To address the urgent need for real-time and 

accurate flight time prediction in intelligent aeronautical 

systems, as well as the inherent limitations of 

traditional methods in computational efficiency and 

real-time performance, this paper proposed and 

validated a rapid prediction framework based on 

LightGBM. The core contributions of this study can be 

summarized as follows: 

(1) An efficient and generalizable prediction 

framework was constructed. This framework transforms 

the complex mapping problem of a flight dynamic 

system into a trainable data regression task, providing 

a novel technical pathway for the rapid prediction of 

flight time. 

(2) The algorithm's performance was validated in a 

high-dynamic scenario. Experimental results 

demonstrate that, compared to traditional physics-

based numerical methods, the proposed framework 

maintains prediction accuracy while reducing the time 

required for a single prediction by approximately 2 

orders of magnitude, achieving millisecond-level 

efficient inference capability. 

(3) Broad application potential and sustainability 

value were elucidated. The framework's lightweight 

nature and high inference speed enable its seamless 

integration into online aerospace mission planning 

systems, onboard real-time decision-making systems, 

or large-scale airspace scheduling platforms. 

Furthermore, by significantly reducing the 

computational energy consumption for trajectory pre-

simulation and planning, it offers algorithmic support for 

green aeronautical operations from the perspective of 

"computational sustainability." This paper also details 

the specific technical pathways for extending this 

framework to broader intelligent aeronautical fields, 

such as the ETA prediction in civil aviation. 

In summary, the core value of this paper lies in the 

innovative application of the LightGBM algorithm to the 

rapid prediction of flight time—a key aeronautical 

performance metric. Through a high-dynamic validation 

case, it demonstrates the significant advantages of this 

data-driven approach in terms of accuracy, speed, and 

energy efficiency, providing a powerful algorithmic tool 

for developing next-generation intelligent, real-time, 

and efficient aeronautical systems. 

REFERENCES 

[1] Ren Mengyuan. Research on Trajectory Prediction and 
Autonomous Decision Making Method of Aircraft Based on 
Deep Learning. Master’s Thesis, Tianjin University: Tianjin, 
China, 2023. (In Chinese) 

[2] Wang Hui, Tian Jinsong, Zhang Liying. Research on firepower 
control of ballistic missile base on flight time. Fire Control and 
Command Control, 2005, (04), 85-87+91. 

[3] Pan Lefei, Li Bangjie, Wang Shunhong, Liu Xinxue. A quick 
method to compute the flight time based on BP neural network. 
Flight Dynamics, 2017, 35(06), 49-52. DOI: 
10.13645/j.cnki.f.d.2017.06.001. 

[4] Zhang Yi, Xiao Longxu, Wang Shunhong. Ballistic missile 
trajectory. National University of Defense Technology Press: 

Changsha, China, 2005, 161-165． 

[5] Wei Jiamei, Yuan Shujuan, Kong Shanhan. Development and 
application of light gradient boosting machine. Computer 
Engineering and Applications, 2025, 61(05),32-42 



LightGBM-Based Flight Time Prediction Journal of Intelligent Aeronautical Systems and Sustainable Flight Technologies, 2026, 2      9 

[6] Luo Changwei, Wang Shuangshuang, Yin Junsong. Research 
status and prospect of ensemble learning. Journal Of 

Command And Control, 2023, 9(01)，1-8. 

[7] Ke G, Meng Q, Finley T. Lightgbm: A highly efficient gradient 
boosting decision tree[C]//Advances in neural information 

processing systems. 2017, 3146－3154． 

[8] Lai Zhenyu. Prediction of TBM penetration rate based on 
LightGBM. Master’s Thesis, Lanzhou Jiaotong University: 
Lanzhou, China, 2024. (In Chinese) 

[9] Li Mengke, Sun Yan,Liu Hongqi, Qu Jingchen, Hou Ruiqin. 
Research on risk prediction model for unplanned return to ICU 
based on machine learning algorithm. Chinese Nursing 
Research, 2024, 38(22), 3976-3982. 

[10] Sani S H, Xia H B, Milisavljevic-syed J. Supply chain 4.0: a 
machine learning-based Bayesian-optimized LightGBM model 
for predicting supply chain risk. Machines, 2023, 11(9), 888. 

[11] Wang D N, Li L, Zhao D. Corporate finance risk prediction 
based on LightGBM . Information Sciences, 2022, 602: 259-
268. 

[12] Liu Enbo, Zhao Lingling, Su Xiaohong. Light GBM-based 
method for internet advertising conversion rate prediction. 
Intelligent Computer and Applications, 2020, 10(05), 67-70+75. 

[13] Cui Jiaxu, Yang Bo. Survey on Bayesian optimization 
methodology and applications. Journal of Software, 2018, 
29(10): 3068-3090. (in Chinese) 

[14] Jjing Yaobin. Prediction of TBM tunneling efficiency based on 
BP neural network. Master’s Thesis, Lanzhou Jiaotong 
University: Lanzhou, China, 2022. (In Chinese) 

[15] Wang Yisen, Xia Shutao. A survey of random forests 
algorithms. Information and Communications Technologies, 
2018, 12(01), 49-55. 

[16] Li Zhanshan, Liu Zhaogen. Feature selection algorithm based 
on XGBoost. Journal on Communications, 2019, 40(10), 101-
108. 

 

 

 

 
https://doi.org/10.65904/3083-3450.2026.02.01 
 

© 2026 Li et al. 
This is an open access article licensed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution and reproduction in any medium, 
provided the work is properly cited. 
 
 

https://doi.org/10.65904/3083-3450.2026.02.01
http://creativecommons.org/licenses/by/4.0/

