Journal of Intelligent Aeronautical Systems and Sustainable Flight Technologies, 2026, 2, 1-9 1

A LightGBM Framework for Rapid Flight Time Prediction with High-

Dynamic Validation
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Abstract: To meet the urgent need for real-time and accurate flight time prediction in intelligent aeronautical systems,
this paper proposes a rapid prediction framework for aerial vehicle flight time based on the Light Gradient Boosting
Machine (LightGBM). To validate the method's effectiveness, a high-dynamic autonomous flight scenario with a well-
defined dynamic model was selected. Experimental results demonstrate that, compared to traditional physics-based
numerical integration, the trained LightGBM model maintains prediction accuracy while reducing the time per prediction
by approximately two orders of magnitude to the millisecond level. Furthermore, the model's lightweight nature helps
reduce the energy consumption of computational tasks, aligning with sustainable computing principles. The proposed
framework is generalizable, with its technical pathway also applicable to other aeronautical fields requiring rapid time

prediction, such as estimating time of arrival in civil aviation.
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1. INTRODUCTION

With the advancement of artificial intelligence and
aerospace technologies, intelligent autonomous aerial
vehicles (including unmanned aerial vehicles,
advanced air mobility vehicles, and high-dynamic
specialty aerial vehicles) are gradually becoming the
core units for future air traffic and mission execution [1].
In the coordinated operations and real-time aerospace
mission planning of these complex systems, the rapid
and accurate prediction of aerial vehicle flight time is a
critical prerequisite for achieving efficient decision-
making and ensuring spatiotemporal coordination [2-3].
Whether for a swarm of UAVs conducting area
surveillance or a high-speed aerial vehicle completing
time-sensitive missions, accurately estimating the time
to reach the target point is directly related to mission
success and safety.

Traditional flight time prediction methods primarily
rely on physics-based numerical integration or look-up
tables [4]. While the former offers high accuracy, it
suffers from long computation times, making it difficult
to meet the demands of online real-time planning. The
latter, although fast, has weak generalization
capabilities and cannot adapt to dynamically changing
initial conditions and environmental parameters.
Therefore, developing a prediction model that
combines both high accuracy and high real-time
performance has become an urgent technical
challenge in the domain of intelligent aeronautical
systems.
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In recent years, machine learning algorithms
represented by the Gradient Boosting Decision Tree
(GBDT) have demonstrated significant potential in
numerous regression prediction tasks, owing to their
powerful nonlinear fitting capabilities and excellent
predictive performance [5-6]. Among them, the Light
Gradient Boosting Machine (LightGBM) is particularly
suitable for deployment in resource-constrained or
latency-sensitive real-time systems due to its faster
training speed, lower memory footprint, and superior
processing efficiency [7]. However, despite the
widespread application of LightGBM in various fields
[8-12], its application to the regression prediction of the
entire flight time for high-dynamic autonomous aerial
vehicles—a problem characterized by strongly
nonlinear dynamics—remains relatively unexplored.
Specifically, validating its predictive efficacy in high-
dynamic flight scenarios with extremely stringent time
constraints is of great significance for assessing the
algorithm's  applicability in  broader intelligent
aeronautical missions.

To address this gap and thoroughly examine the
performance of the LightGBM algorithm in complex
aeronautical prediction tasks, this paper employs a
missile—a typical high-dynamic autonomous aerial
vehicle—as the experimental subject and proposes a
LightGBM-based rapid flight time prediction framework.
First, the fundamental principles of LightGBM are
systematically introduced. Subsequently, based on an
analysis of the factors influencing missile flight time,
model features are selected and a regression
prediction model is constructed. Finally, its
effectiveness is validated through  simulation
experiments. Experimental results indicate that,
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compared to traditional physics-based numerical
methods, the proposed approach maintains prediction
accuracy while improving computational speed by
several orders of magnitude, achieving real-time
prediction at the millisecond level. Furthermore, this
paper discusses the potential and the technical
pathways for its migration to a broader range of
intelligent aeronautical systems.

2. FUNDAMENTALS OF LIGHTGBM

LightGBM was first proposed in 2017 by
researchers including Tiangi Chen from Microsoft
Research Asia. It quickly gained widespread attention
in the machine learning community, becoming a rising
star in the field [7]. It is fundamentally an ensemble
learning method. Its basic principle aligns with that of
the GBDT and the Extreme Gradient Boosting
(XGBoost) algorithms, which also use decision trees as
base learners. The method employs the negative
gradient of the loss function as an approximation of the
residual for the current decision tree to fit new trees,
constructing a powerful model by combining the
predictions of multiple base learners. Compared to
XGBoost, LightGBM focuses on optimizing model
training speed. It introduces several enhancements,
including a histogram-based decision tree algorithm, a
leaf-wise growth strategy with depth limitation,
Gradient-based One-Side Sampling (GOSS), and
Exclusive Feature Bundling (EFB). These
improvements endow LightGBM with advantages such
as higher training efficiency, lower memory usage,
improved accuracy, support for parallel learning, and
the capability to handle large-scale data [5-6, 8].

2.1. Improvements and Optimizations in LightGBM

(1) Histogram-based Decision Tree Algorithm. The
fundamental concept is to first discretize continuous
floating-point feature values into K integers, while
constructing a histogram with a width of K. While
traversing the data, statistics are accumulated in the
histogram using the discretized values as indices. After
a single pass through the data, the histogram contains
the accumulated feature statistics. The optimal split
point is then found by traversing these discretized
values in the histogram. The principle of the histogram
algorithm is illustrated in Figure 1. The advantages of
this approach are reduced memory usage and lower
computational cost, as it eliminates the need for storing
pre-sorted results and only requires saving the
discretized feature values.
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Figure 1: Schematic diagram of the histogram algorithm.

Furthermore, the histogram algorithm can be
accelerated through subtraction. The histogram of a
leaf node can be obtained by subtracting the histogram
of its sibling node from the histogram of their parent
node, which can double the training speed. Typically,
constructing a histogram requires traversing all data
points on that leaf. However, histogram subtraction only
needs to traverse the K bins of the histograms
involved. This subtraction process is illustrated in
Figure 2.
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Figure 2: Schematic diagram of subtracting histograms.

(2) Leaf-wise Growth Strategy with Depth Limitation.
The fundamental concept of the leaf-wise decision tree
growth strategy is to iteratively find and split the leaf
with the highest split gain among all current leaves.
Compared to the level-wise growth strategy, this
approach can achieve greater error reduction and
better accuracy for the same number of splits.
However, it may result in deeper trees and potential
overfitting. Therefore, LightGBM incorporates a
maximum depth constraint on top of the leaf-wise
strategy to ensure high efficiency while preventing
overfitting. The leaf-wise tree growth is illustrated in
Figure 3.

Figure 3: Schematic diagram of the leaf-wise tree growth.
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(3) Gradient-based One-Side Sampling (GOSS).
According to the definition of information gain
calculation, samples with larger gradients have a
greater impact on information gain. GOSS first sorts all
values of the feature to be split in descending order
based on their absolute magnitude and selects the top
a data points with the largest absolute values. Then, it
randomly selects b data points from the remaining
data with smaller gradients. These b data points are
subsequently multiplied by a weighting coefficient c.
Finally, information gain is calculated using these a+5
data points. This approach allows the algorithm to
focus more on under-trained samples without
significantly altering the distribution of the original
dataset. From the perspective of sample reduction,
GOSS excludes most samples with small gradients and
uses only the remaining samples to compute
information gain, making it an algorithm that balances
data reduction and accuracy preservation.

(4) Exclusive Feature Bundling (EFB). EFB is an
efficient, lossless technique designed to reduce feature
dimensionality. Its core idea is to combine multiple
approximately mutually exclusive features into a new
"bundled feature." This reduces the total number of
features the model needs to process without losing the
original information.

2.2. Advantages of LightGBM for Missile Flight
Time Prediction

For regression problems demanding high precision
and efficiency, such as missile flight time prediction,
LightGBM offers the following advantages:

(1) High Prediction Accuracy and Efficient Model
Convergence. Missile flight time is influenced by the
complex coupling of multiple factors, including initial
velocity, launch angle, and atmospheric conditions. The
depth-limited leaf-wise growth strategy employed by
LightGBM can construct decision trees with superior
and more refined structures compared to traditional
level-wise strategies under the same number of splits.
This  effectively  captures complex  nonlinear
relationships, leading to higher prediction accuracy.
Concurrently, overfitting is effectively prevented by
imposing a maximum depth limit.

(2) High Training Efficiency and Low Computational
Resource Consumption. The histogram-based decision
tree algorithm and GOSS used by LightGBM can
significantly enhance training efficiency and reduce
machine learning training time while maintaining

accuracy. The histogram algorithm itself has low
memory overhead. Coupled with the EFB technique
which reduces the number of features, memory
consumption is notably decreased. This makes it
feasible to process large-scale ballistic simulation data
on conventional computing equipment.

(3) Model Interpretability for Assisting Physical
Analysis and Design. LightGBM's built-in feature
importance evaluation function can quantify the
contribution of each input variable to the missile flight
time and rank the importance of various features
influencing it. This aids engineers in understanding the
primary and secondary factors affecting flight time,
providing valuable insights for physical analysis and
design considerations.

3. FEATURE SELECTION FOR THE MISSILE
FLIGHT TIME PREDICTION MODEL

According to missile ballistics, under standard
conditions, the total flight time of a missile is a
deterministic function of the launch point's longitude,
latitude, and altitude, as well as the target point's
longitude, latitude, and altitude [4]. The standard
ballistic initial calculation data for a missile includes six
parameters: launch point longitude 4, launch point
latitude B,, launch point altitude H,, target point
longitude A4, target point latitude B, , and target point
altitude H,. Since the Earth is a rotating ellipsoid, the
main factors influencing missile flight time can be
simplified to five parameters through coordinate
transformation: launch point latitude B,, geodesic
distance between the launch and target points L,
geodetic azimuth between the launch and target points
A, , launch point altitude H,, and target point altitude
H_ [2-3].

m

3.1. Launch Point Latitude

Variations in launch point latitude B, affect missile
flight time due to changes in the Earth's gravitational
field and its rotational linear velocity, with the combined
effect being related to the geodetic azimuth 4, . When
the geodetic azimuth is 0" ~180", an increase in launch
point latitude leads to a decrease in flight time; when
the geodetic azimuth is 180" ~360°, an increase in
launch point latitude results in an increase in flight time.
Details are illustrated in Figure 4.

3.2. Missile Range

For medium to long-range ballistic missiles, a larger
range corresponds to a longer flight time, with the
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relationship between flight time and range being
approximately linear, as detailed in Figure 5. For short-
range ballistic missiles, when the range is relatively
small, the total flight time for a shorter range might
actually be longer than that for a slightly larger range.
This can occur because, to ensure the missile's active
phase burnout occurs outside the dense atmosphere,
the trajectory for a very short range may necessitate
specific adjustments that impact the total time of flight.

The latitude increases
progressively from B; to B,.

flight time

o

90° 180° 270° 360°

geodetic azimuth

Figure 4: Schematic diagram of the flight time changes with
the geodetic azimuth and the latitude of the launch site.
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Figure 5: Schematic diagram of the variation of flight time of
medium and long-range missiles with range.

3.3. Geodetic Azimuth

The influence of the geodetic azimuth 4, on missile
flight time is primarily caused by the Coriolis
acceleration resulting from the Earth's rotation. When
the launch point is located in low-latitude regions, the
variation of flight time with the A4, approximately
follows a sinusoidal curve, as specifically shown in
Figure 6(a). When the launch point is in high-latitude
regions, the variation of flight time with the 4,
gradually deviates from a sinusoidal curve but remains
a periodic function, as detailed in Figure 6(b).

3.4. Launch Point Altitude and Target Point Altitude

Research in literature [3] indicates that launch point
altitude and target point altitude have a minor impact
on parameters such as the flight path angle and aiming

azimuth, and their influence on the total flight time is
negligible.
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Figure 6: Schematic diagram of the variation of missile flight
time with the azimuth.

Consequently, for the model in this paper, the input
features are selected as launch point latitude B,
missile range L,, and geodetic azimuth A4, , while the
output feature is missile flight time 7. The process of
feature selection for the missile flight time prediction
model is illustrated in Figure 7.
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Figure 7: Block diagram of the feature selection process.
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4. RAPID PREDICTION METHOD FOR MISSILE
FLIGHT TIME BASED ON LIGHTGBM

41. Model
Procedure

Development Environment and

The system configuration for this paper is as
follows: the operating system is Windows 10, the
processor is an Intel® Core™ i7-4702MQ @ 2.20GHz,
the programming language is Python 3.10.18, and the
LightGBM 4.6.0 package is employed to build the
prediction model. The training workflow for the
prediction model is illustrated in Figure 8.

m

load data
explore data

train data 80% data partitioning and
standardization

Bayesian training set
and validation set
partitioning (8:2)

!

Bayesian
hyperparameter
optimization

test data 20%

train model

evaluate model

analyze feature
importance

save model

Figure 8: Block diagram of the predictive model training
process.

4.2. Dataset Source and Partition

This paper employs a ballistic simulation software to
generate 29,791 trajectories under varying conditions
of launch point latitude B,, missile range L,, and
geodetic azimuth A4, within the specified range
envelope, following a discrete sampling rule. The
corresponding flight time for each case is obtained. For
model construction, this dataset of 29,791 samples
serves as the training data for LightGBM. The dataset
is partitioned into training and testing sets at an 80/20
ratio. The training set is used for model fitting, while the
testing set is reserved for model evaluation.

4.3. Hyperparameter Optimization

The LightGBM algorithm encompasses numerous
adjustable hyperparameters. Appropriate parameter
settings can enhance both the training speed and
prediction accuracy of the model. While the commonly
used grid search method can find the best-performing
parameters by exhaustively iterating through candidate
combinations, it suffers from high computational cost
and low search efficiency. This paper utilizes the
BayesianOptimization library to perform Bayesian
optimization [13] for selecting optimal parameters. This
approach can find a relatively good hyperparameter
combination within a limited timeframe. After 30 search
iterations, a relatively optimal set of hyperparameters
was identified. The total search time was 51.52 s. The
optimal hyperparameter combination is presented in
Table 1.

Table 1: Optimal Combination of Hyperparameters.

Hyperparameter Value
num_leaves 66
max_depth 15
learning_rate 0.3
feature_fraction 0.5
bagging_fraction 1.0
bagging_freq 10
lambda_I1 0.0
lambda_[2 0.0
min_data_in_leaf 10

5. SIMULATION EXPERIMENTS AND RESULTS
ANALYSIS

5.1. Evaluation of Model Prediction Results

The optimal hyperparameters were input into the
LightGBM model, yielding a Bayesian-optimized missile
flight time prediction model. The model's predictive
performance was then evaluated using the testing set,
with an early stopping mechanism employed
(maximum iterations: 1000). The final model prediction
results showed a coefficient of determination (R?) of
0.999, a Mean Absolute Error (MAE) of 0.0001, a Root
Mean Square Error (RMSE) of 0.0001, and a model
training time of 1.61 s.

Figure 9 presents the scatter plot of predicted
versus actual values, showing the points tightly
clustered around the diagonal line. Figure 10 displays
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the residual plot, where the residual points are
randomly distributed above and below the zero line.
Figure 11 compares predicted and true values for 50
randomly selected data groups, demonstrating nearly
perfect overlap. Figures 12 and 13 show the training
curves for MAE and RMSE, respectively, indicating that
both the training and testing set curves rapidly
decrease before stabilizing. Collectively, these five
figures illustrate the excellent performance of the
prediction model from different perspectives.
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Figure 9: Scatter plot of predicted and actual values.
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Figure 11: Comparison chart between predicted and actual
values of 50 random data sets.

LightGBM also provides a feature importance
analysis function. As analyzed by the model and shown
in Figure 14, the variation in missile range is the

primary factor influencing flight time, accounting for
99.39% of the importance. This is followed by the
geodetic azimuth and the launch point latitude,
contributing 0.51% and 0.1%, respectively.
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Figure 12: MAE training curve.
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Figure 14: Bar chart of feature importance analysis.

5.2. Comparative Analysis of Prediction Results
from Different Models

To demonstrate the advantages of the LightGBM
algorithm in predicting missile flight time, the LightGBM
model was compared and analyzed against the BP
Neural Network model [3, 14], the Random Forest
model [15], and the XGBoost model [16]. Tables 2, 3,
and 4 present the hyperparameter settings for the BP
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Neural Network, Random Forest, and XGBoost

models, respectively.

Table 2: Hyperparameters of BP Neural Network.

Hyperparameter Value
hidden_layer_sizes (100,50,25)
activation relu
solver adam
alpha 0.0001
batch_size 128
learning_rate adaptive
learning_rate_init 0.001
max_iter 1000
early_stopping True
validation_fraction 0.1
n_iter_no_change 50

Table 3: Hyperparameters of Random Forest.

Hyperparameter Value
n_estimators 800
max_depth 30
min_samples_split 2
min_samples_leaf 1
max_features 0.8
bootstrap True
n_jobs -1
Table 4: Hyperparameters of XGBoost.
Hyperparameter Value
max_depth 12
learning_rate 0.1
n_estimators 1000
subsample 0.8
colsample_bytree 0.8
reg_alpha 0.01
reg_lambda 0.01
min_child_weight 5

Based on the calculations, the performance metrics
of the four prediction models are shown in Table 5. A
comparative analysis of the prediction results indicates
that the R? for all four models is close to 1, suggesting

excellent fitting performance on the given dataset by
each model. Notably, compared to the other three
algorithms, the LightGBM algorithm achieves a lower
MAE and RMSE, while also requiring less training time.
Consequently, in terms of model performance ranking,
LightGBM demonstrates the best results, followed by
XGBoost, then the BP Neural Network and Random
Forest.

Table 5: Performance comparison of four prediction

models.
Model MAE | RMSE | Re Ej::'?g
BP Neural Network | 0.6443 | 0.8613 | 0.993 20.47
Random Forest 0.9256 | 1.3318 | 0.986 7.21
XGBoost 0.0021 | 0.0024 | 0.998 4.51
LightGBM 0.0001 | 0.0001 | 0.999 1.61

5.3. Rapid Prediction of Missile Flight Time

Based on the pre-trained LightGBM model, rapid
prediction of missile flight time was conducted.
Experimental results indicate that the prediction for a
single missile took 2 ms. The total time for a batch
prediction of 200 missiles was 6 ms, resulting in an
average prediction time of 0.03 ms per missile.
However, if traditional numerical integration methods
are employed, predicting the flight time of a single
missile typically requires on the order of minutes. This
clearly demonstrates that the method proposed in this
study achieves an improvement in prediction efficiency
by orders of magnitude, effectively meeting the
timeliness requirements for missile flight time
prediction.

6. PRACTICAL IMPLICATIONS AND GENERAL-
IZABILITY DISCUSSION

The experiment demonstrates that the flight time
prediction model for high-dynamic autonomous aerial
vehicles, built upon LightGBM, achieves millisecond-
level prediction response while maintaining high
predictive accuracy. This "instantaneous"
computational capability allows it to be seamlessly
integrated into online aerospace mission planning
systems or onboard real-time decision-making
systems. In dynamic and uncertain environments,
aerial vehicles can leverage this capability for
instantaneous evaluation and optimization of numerous
candidate trajectories, enabling adaptive online re-
planning, thereby significantly enhancing the system's
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autonomy and agility. Furthermore, the model's
lightweight nature places minimal demands on
hardware computing power, serving as an efficient
alternative to  high-energy-consumption  physical
simulation models. Its application in scenarios such as
large-scale airspace scheduling or dense swarm
simulation can substantially reduce the computational
energy consumption of central servers. This directly
aligns with the pursuit of "computational sustainability"
and "green computing" in the development of intelligent
aeronautics.

Although this paper employs a typical high-dynamic
autonomous aerial vehicle as the validation platform,
the proposed LightGBM prediction framework is
fundamentally a general-purpose, data-driven mapping
model with strong methodological extensibility, allowing
for migration to various intelligent aeronautical
prediction tasks. One direct application is the prediction
of the Estimated Time of Arrival (ETA) in civil aviation.
The key to successfully migrating this framework to
such a scenario lies in the adaptation of feature
engineering and data pipelines: the input features need
to be expanded to encompass multi-source information
including real-time weather, air traffic control
instructions, aircraft performance, and route structure.
Concurrently, an automated data processing pipeline
should be constructed based on historical flight data
(e.g., ADS-B records). Through processes of cleaning,
alignment, and feature extraction, high-quality "state-
time" training samples can be generated. This process
enables the model to learn the comprehensive impact
of complex operational environments on flight time,
providing more accurate and rapid decision support for
airport arrival management and air traffic flow
prediction. This demonstrates the potential for
extending the proposed method from a specific
validation case to a broader range of intelligent
aeronautical applications.

7. CONCLUSION

To address the urgent need for real-time and
accurate flight time prediction in intelligent aeronautical
systems, as well as the inherent limitations of
traditional methods in computational efficiency and
real-time performance, this paper proposed and
validated a rapid prediction framework based on
LightGBM. The core contributions of this study can be
summarized as follows:

(1) An efficient and generalizable prediction
framework was constructed. This framework transforms

the complex mapping problem of a flight dynamic
system into a trainable data regression task, providing
a novel technical pathway for the rapid prediction of
flight time.

(2) The algorithm's performance was validated in a
high-dynamic scenario. Experimental results
demonstrate that, compared to traditional physics-
based numerical methods, the proposed framework
maintains prediction accuracy while reducing the time
required for a single prediction by approximately 2
orders of magnitude, achieving millisecond-level
efficient inference capability.

(3) Broad application potential and sustainability
value were elucidated. The framework's lightweight
nature and high inference speed enable its seamless
integration into online aerospace mission planning
systems, onboard real-time decision-making systems,
or large-scale airspace scheduling platforms.
Furthermore, by significantly reducing the
computational energy consumption for trajectory pre-
simulation and planning, it offers algorithmic support for
green aeronautical operations from the perspective of
"computational sustainability." This paper also details
the specific technical pathways for extending this
framework to broader intelligent aeronautical fields,
such as the ETA prediction in civil aviation.

In summary, the core value of this paper lies in the
innovative application of the LightGBM algorithm to the
rapid prediction of flight time—a key aeronautical
performance metric. Through a high-dynamic validation
case, it demonstrates the significant advantages of this
data-driven approach in terms of accuracy, speed, and
energy efficiency, providing a powerful algorithmic tool
for developing next-generation intelligent, real-time,
and efficient aeronautical systems.
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